1.Post-resuscitation care of patients with return of spontaneous circulation after out-of-hospital cardiac arrest at the emergency department.
Jing Kai Jackie LAM ; Jen Heng PEK
Singapore medical journal 2025;66(2):66-72
INTRODUCTION:
Out-of-hospital-cardiac-arrest (OHCA) is a major public health challenge and post-return-of-spontaneous-circulation (ROSC) goals have shifted from just survival to survival with intact neurology. Although post-ROSC care is crucial for survival with intact neurology, there are insufficient well-established protocols for post-resuscitation care. We aimed to evaluate post-resuscitation care in the emergency department (ED) of adult (aged ≥16 years) OHCA patients with sustained ROSC and its associated neurologically intact survival.
METHODS:
A retrospective review of electronic medical records was conducted for OHCA patients with sustained ROSC at the ED. Data including demographics, pre-hospital resuscitation, ED resuscitation, post-resuscitation care and eventual outcomes were analysed.
RESULTS:
Among 921 OHCA patients, 85 (9.2%) had sustained ROSC at the ED. Nineteen patients (19/85, 22.4%) survived, with 13 (13/85, 15.3%) having intact neurology at discharge. Electrocardiogram and chest X-ray were performed in all OHCA patients, whereas computed tomography (CT) was performed inconsistently, with CT brain being most common (74/85, 87.1%), while CT pulmonary angiogram (6/85, 7.1%), abdomen and pelvis (4/85, 4.7%) and aortogram (2/85, 2.4%) were done infrequently. Only four patients (4.7%) had all five neuroprotective goals of normoxia, normocarbia, normotension, normothermia and normoglycaemia achieved in the ED. The proportion of all five neuroprotective goals being met was significantly higher ( P = 0.01) among those with neurologically intact survival (3/13, 23.1%) than those without (1/72, 1.4%).
CONCLUSION
Post-resuscitation care at the ED showed great variability, indicating gaps between recommended guidelines and clinical practice. Good quality post-resuscitation care, centred around neuroprotection goals, must be initiated promptly to achieve meaningful survival with intact neurology.
Humans
;
Out-of-Hospital Cardiac Arrest/mortality*
;
Retrospective Studies
;
Male
;
Female
;
Middle Aged
;
Emergency Service, Hospital
;
Cardiopulmonary Resuscitation/methods*
;
Return of Spontaneous Circulation
;
Aged
;
Adult
;
Treatment Outcome
;
Electrocardiography
;
Tomography, X-Ray Computed
;
Aged, 80 and over
2.Preliminary clinical practice of radical prostatectomy without preoperative biopsy.
Ranlu LIU ; Lu YIN ; Shenfei MA ; Feiya YANG ; Zhenpeng LIAN ; Mingshuai WANG ; Ye LEI ; Xiying DONG ; Chen LIU ; Dong CHEN ; Sujun HAN ; Yong XU ; Nianzeng XING
Chinese Medical Journal 2025;138(6):721-728
BACKGROUND:
At present, biopsy is essential for the diagnosis of prostate cancer (PCa) before radical prostatectomy (RP). However, with the development of prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT) and multiparametric magnetic resonance imaging (mpMRI), it might be feasible to avoid biopsy before RP. Herein, we aimed to explore the feasibility of avoiding biopsy before RP in patients highly suspected of having PCa after assessment of PSMA PET/CT and mpMRI.
METHODS:
Between December 2017 and April 2022, 56 patients with maximum standardized uptake value (SUVmax) of ≥4 and Prostate Imaging Reporting and Data System (PI-RADS) ≥4 lesions who received RP without preoperative biopsy were enrolled from two tertiary hospitals. The consistency between clinical and pathological diagnoses was evaluated. Preoperative characteristics were compared among patients with different pathological types, T stages, International Society of Urological Pathology (ISUP) grades, and European Association of Urology (EAU) risk groups.
RESULTS:
Fifty-five (98%) patients were confirmed with PCa by pathology, including 49 (89%) with clinically significant prostate cancer (csPCa, defined as ISUP grade ≥2 malignancy). One patient was diagnosed with high-grade prostatic intraepithelial neoplasia (HGPIN). CsPCa patients, compared with clinically insignificant prostate cancer (cisPCa) and HGPIN patients, were associated with a higher level of prostate-specific antigen (22.9 ng/mL vs . 10.0 ng/mL, P = 0.032), a lower median prostate volume (32.2 mL vs . 65.0 mL, P = 0.001), and a higher median SUVmax (13.3 vs . 5.6, P <0.001).
CONCLUSIONS
It might be feasible to avoid biopsy before RP for patients with a high probability of PCa based on PSMA PET/CT and mpMRI. However, the diagnostic efficacy of csPCa with PI-RADS ≥4 and SUVmax of ≥4 is inadequate for performing a procedure such as RP. Further prospective multicenter studies with larger sample sizes are necessary to confirm our perspectives and establish predictive models with PSMA PET/CT and mpMRI.
Humans
;
Male
;
Prostatectomy/methods*
;
Prostatic Neoplasms/diagnosis*
;
Middle Aged
;
Aged
;
Positron Emission Tomography Computed Tomography/methods*
;
Biopsy
;
Multiparametric Magnetic Resonance Imaging
;
Prostate-Specific Antigen/metabolism*
3.Chest computed tomography-based artificial intelligence-aided latent class analysis for diagnosis of severe pneumonia.
Caiting CHU ; Yiran GUO ; Zhenghai LU ; Ting GUI ; Shuhui ZHAO ; Xuee CUI ; Siwei LU ; Meijiao JIANG ; Wenhua LI ; Chengjin GAO
Chinese Medical Journal 2025;138(18):2316-2323
BACKGROUND:
There is little literature describing the artificial intelligence (AI)-aided diagnosis of severe pneumonia (SP) subphenotypes and the association of the subphenotypes with the ventilatory treatment efficacy. The aim of our study is to illustrate whether clinical and biological heterogeneity, such as ventilation and gas-exchange, exists among patients with SP using chest computed tomography (CT)-based AI-aided latent class analysis (LCA).
METHODS:
This retrospective study included 413 patients hospitalized at Xinhua Hospital diagnosed with SP from June 1, 2015 to May 30, 2020. AI quantification results of chest CT and their combination with additional clinical variables were used to develop LCA models in an SP population. The optimal subphenotypes were determined though evaluating statistical indicators of all the LCA models, and clinical implications of them such as guiding ventilation strategies were further explored by statistical methods.
RESULTS:
The two-class LCA model based on AI quantification results of chest CT can describe the biological characteristics of the SP population well and hence yielded the two clinical subphenotypes. Patients with subphenotype-1 had milder infections ( P <0.001) than patients with subphenotype-2 and had lower 30-day ( P <0.001) and 90-day ( P <0.001) mortality, and lower in-hospital ( P = 0.001) and 2-year ( P <0.001) mortality. Patients with subphenotype-1 showed a better match between the percentage of non-infected lung volume (used to quantify ventilation) and oxygen saturation (used to reflect gas exchange), compared with patients with subphenotype-2. There were significant differences in the matching degree of lung ventilation and gas exchange between the two subphenotypes ( P <0.001). Compared with patients with subphenotype-2, those with subphenotype-1 showed a relatively better match between CT-based AI metrics of the non-infected region and oxygenation, and their clinical outcomes were effectively improved after receiving invasive ventilation treatment.
CONCLUSIONS
A two-class LCA model based on AI quantification results of chest CT in the SP population particularly revealed clinical heterogeneity of lung function. Identifying the degree of match between ventilation and gas-exchange may help guide decisions about assisted ventilation.
Humans
;
Tomography, X-Ray Computed/methods*
;
Male
;
Female
;
Retrospective Studies
;
Middle Aged
;
Artificial Intelligence
;
Aged
;
Pneumonia/diagnosis*
;
Latent Class Analysis
;
Adult
4.Artificial intelligence in medical imaging: From task-specific models to large-scale foundation models.
Yueyan BIAN ; Jin LI ; Chuyang YE ; Xiuqin JIA ; Qi YANG
Chinese Medical Journal 2025;138(6):651-663
Artificial intelligence (AI), particularly deep learning, has demonstrated remarkable performance in medical imaging across a variety of modalities, including X-ray, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET), and pathological imaging. However, most existing state-of-the-art AI techniques are task-specific and focus on a limited range of imaging modalities. Compared to these task-specific models, emerging foundation models represent a significant milestone in AI development. These models can learn generalized representations of medical images and apply them to downstream tasks through zero-shot or few-shot fine-tuning. Foundation models have the potential to address the comprehensive and multifactorial challenges encountered in clinical practice. This article reviews the clinical applications of both task-specific and foundation models, highlighting their differences, complementarities, and clinical relevance. We also examine their future research directions and potential challenges. Unlike the replacement relationship seen between deep learning and traditional machine learning, task-specific and foundation models are complementary, despite inherent differences. While foundation models primarily focus on segmentation and classification, task-specific models are integrated into nearly all medical image analyses. However, with further advancements, foundation models could be applied to other clinical scenarios. In conclusion, all indications suggest that task-specific and foundation models, especially the latter, have the potential to drive breakthroughs in medical imaging, from image processing to clinical workflows.
Humans
;
Artificial Intelligence
;
Deep Learning
;
Diagnostic Imaging/methods*
;
Magnetic Resonance Imaging
;
Tomography, X-Ray Computed
;
Positron-Emission Tomography
5.Methods for enhancing image quality of soft tissue regions in synthetic CT based on cone-beam CT.
Ziwei FU ; Yechen ZHU ; Zijian ZHANG ; Xin GAO
Journal of Biomedical Engineering 2025;42(1):113-122
Synthetic CT (sCT) generated from CBCT has proven effective in artifact reduction and CT number correction, facilitating precise radiation dose calculation. However, the quality of different regions in sCT images is severely imbalanced, with soft tissue region exhibiting notably inferior quality compared to others. To address this imbalance, we proposed a Multi-Task Attention Network (MuTA-Net) based on VGG-16, specifically focusing the enhancement of image quality in soft tissue region of sCT. First, we introduced a multi-task learning strategy that divides the sCT generation task into three sub-tasks: global image generation, soft tissue region generation and bone region segmentation. This approach ensured the quality of overall sCT image while enhancing the network's focus on feature extraction and generation for soft tissues region. The result of bone region segmentation task guided the fusion of sub-tasks results. Then, we designed an attention module to further optimize feature extraction capabilities of the network. Finally, by employing a results fusion module, the results of three sub-tasks were integrated, generating a high-quality sCT image. Experimental results on head and neck CBCT demonstrated that the sCT images generated by the proposed MuTA-Net exhibited a 12.52% reduction in mean absolute error in soft tissue region, compared to the best performance among the three comparative methods, including ResNet, U-Net, and U-Net++. It can be seen that MuTA-Net is suitable for high-quality sCT image generation and has potential application value in the field of CBCT guided adaptive radiation therapy.
Cone-Beam Computed Tomography/methods*
;
Humans
;
Image Processing, Computer-Assisted/methods*
;
Artifacts
;
Algorithms
;
Bone and Bones/diagnostic imaging*
;
Neural Networks, Computer
6.Study on the separation method of lung ventilation and lung perfusion signals in electrical impedance tomography based on rime algorithm optimized variational mode decomposition.
Guobin GAO ; Kun LI ; Junyao LI ; Mingxu ZHU ; Yu WANG ; Xiaoheng YAN ; Xuetao SHI
Journal of Biomedical Engineering 2025;42(2):228-236
Real-time acquisition of pulmonary ventilation and perfusion information through thoracic electrical impedance tomography (EIT) holds significant clinical value. This study proposes a novel method based on the rime (RIME) algorithm-optimized variational mode decomposition (VMD) to separate lung ventilation and perfusion signals directly from raw voltage data prior to EIT image reconstruction, enabling independent imaging of both parameters. To validate this approach, EIT data were collected from 16 healthy volunteers under normal breathing and inspiratory breath-holding conditions. The RIME algorithm was employed to optimize VMD parameters by minimizing envelope entropy as the fitness function. The optimized VMD was then applied to separate raw data across all measurement channels in EIT, with spectral analysis identifying relevant components to reconstruct ventilation and perfusion signals. Results demonstrated that the structural similarity index (SSIM) between perfusion images derived from normal breathing and breath-holding states averaged approximately 84% across all 16 subjects, significantly outperforming traditional frequency-domain filtering methods in perfusion imaging accuracy. This method offers a promising technical advancement for real-time monitoring of pulmonary ventilation and perfusion, holding significant value for advancing the clinical application of EIT in the diagnosis and treatment of respiratory diseases.
Humans
;
Electric Impedance
;
Algorithms
;
Tomography/methods*
;
Pulmonary Ventilation/physiology*
;
Lung/diagnostic imaging*
;
Image Processing, Computer-Assisted/methods*
;
Adult
7.Development and evaluation of a positioning system for radiotherapy patient based on structured light surface imaging.
Yungang WANG ; Gongsen ZHANG ; Xianrui YAN ; Guangjie YANG ; Wei WANG ; Jian ZHU ; Linlin WANG
Journal of Biomedical Engineering 2025;42(2):237-245
This paper aims to propose a noninvasive radiotherapy patient positioning system based on structured light surface imaging, and evaluate its clinical feasibility. First, structured light sensors were used to obtain the panoramic point clouds during radiotherapy positioning in real time. The fusion of different point clouds and coordinate transformation were realized based on optical calibration and pose estimation, and the body surface was segmented referring to the preset region of interest (ROI). Then, the global-local registration of cross-source point cloud was achieved based on algorithms such as random sample consensus (RANSAC) and iterative closest point (ICP), to calculate 6 degrees of freedom (DoF) positioning deviation and provide guidance for the correction of couch shifts. The evaluation of the system was carried out based on a rigid adult phantom and volunteers' body, which included positioning error, correlation analysis, and receiver operating characteristic (ROC) analysis. Using Cone Beam CT (CBCT) as the gold standard, the maximum translation and rotation errors of this system were (1.5 ± 0.9) mm along Vrt direction (chest) and (0.7 ± 0.3) ° along Pitch direction (head and neck). The Pearson correlation coefficient between results of system outputs and CBCT verification distributed in an interval of [0.80, 0.84]. Results of ROC analysis showed that the translational and rotational AUC values were 0.82 and 0.85, respectively. In the 4D freedom accuracy test on the human body of volunteers, the maximum translation and rotation errors were (2.6 ± 1.1) mm (Vrt direction, chest and abdomen) and (0.8 ± 0.4)° (Rtn direction, chest and abdomen) respectively. In summary, the positioning system based on structured light body surface imaging proposed in this article can ensure positioning accuracy without surface markers and additional doses, and is feasible for clinical application.
Humans
;
Patient Positioning/methods*
;
Phantoms, Imaging
;
Cone-Beam Computed Tomography
;
Algorithms
;
Radiotherapy, Image-Guided/methods*
;
Radiotherapy Planning, Computer-Assisted/methods*
8.Stroke-p2pHD: Cross-modality generation model of cerebral infarction from CT to DWI images.
Qing WANG ; Xinyao ZHAO ; Xinyue LIU ; Zhimeng ZOU ; Haiwang NAN ; Qiang ZHENG
Journal of Biomedical Engineering 2025;42(2):255-262
Among numerous medical imaging modalities, diffusion weighted imaging (DWI) is extremely sensitive to acute ischemic stroke lesions, especially small infarcts. However, magnetic resonance imaging is time-consuming and expensive, and it is also prone to interference from metal implants. Therefore, the aim of this study is to design a medical image synthesis method based on generative adversarial network, Stroke-p2pHD, for synthesizing DWI images from computed tomography (CT). Stroke-p2pHD consisted of a generator that effectively fused local image features and global context information (Global_to_Local) and a multi-scale discriminator (M 2Dis). Specifically, in the Global_to_Local generator, a fully convolutional Transformer (FCT) and a local attention module (LAM) were integrated to achieve the synthesis of detailed information such as textures and lesions in DWI images. In the M 2Dis discriminator, a multi-scale convolutional network was adopted to perform the discrimination function of the input images. Meanwhile, an optimization balance with the Global_to_Local generator was ensured and the consistency of features in each layer of the M 2Dis discriminator was constrained. In this study, the public Acute Ischemic Stroke Dataset (AISD) and the acute cerebral infarction dataset from Yantaishan Hospital were used to verify the performance of the Stroke-p2pHD model in synthesizing DWI based on CT. Compared with other methods, the Stroke-p2pHD model showed excellent quantitative results (mean-square error = 0.008, peak signal-to-noise ratio = 23.766, structural similarity = 0.743). At the same time, relevant experimental analyses such as computational efficiency verify that the Stroke-p2pHD model has great potential for clinical applications.
Humans
;
Tomography, X-Ray Computed/methods*
;
Diffusion Magnetic Resonance Imaging/methods*
;
Cerebral Infarction/diagnostic imaging*
;
Stroke/diagnostic imaging*
;
Neural Networks, Computer
;
Image Processing, Computer-Assisted/methods*
;
Algorithms
9.A method for determining spatial resolution of phantom based on automatic contour delineation.
Ying LIU ; Minghao SUN ; Haowei ZHANG ; Haikuan LIU
Journal of Biomedical Engineering 2025;42(2):263-271
In this study, we propose an automatic contour outlining method to measure the spatial resolution of homemade automatic tube current modulation (ATCM) phantom by outlining the edge contour of the phantom image, selecting the region of interest (ROI), and measuring the spatial resolution characteristics of computer tomography (CT) phantom image. Specifically, the method obtains a binarized image of the phantom outlined by an automated fast region convolutional neural network (AFRCNN) model, measures the edge spread function (ESF) of the CT phantom with different tube currents and layer thicknesses, and differentiates the ESF to obtain the line spread function (LSF). Finally, the values passing through the zeros are normalized by the Fourier transform to obtain the CT spatial resolution index (RI) for the automatic measurement of the modulation transfer function (MTF). In this study, this algorithm is compared with the algorithm that uses polymethylmethacrylate (PMMA) to measure the MTF of the phantom edges to verify the feasibility of this method, and the results show that the AFRCNN model not only improves the efficiency and accuracy of the phantom contour outlining, but also is able to obtain a more accurate spatial resolution value through automated segmentation. In summary, the algorithm proposed in this study is accurate in spatial resolution measurement of phantom images and has the potential to be widely used in real clinical CT images.
Phantoms, Imaging
;
Tomography, X-Ray Computed/instrumentation*
;
Algorithms
;
Neural Networks, Computer
;
Image Processing, Computer-Assisted/methods*
;
Humans
;
Polymethyl Methacrylate
10.A study on the predictive model of porous hyperelastic properties of human alveolar bone based on computed tomography imaging.
Bin WU ; Mingna LI ; Fan YANG ; Le YUAN ; Yi LU ; Di JIANG ; Yang YI ; Bin YAN
Journal of Biomedical Engineering 2025;42(2):359-365
Alveolar bone reconstruction simulation is an effective means for quantifying orthodontics, but currently, it is not possible to directly obtain human alveolar bone material models for simulation. This study introduces a prediction method for the equivalent shear modulus of three-dimensional random porous materials, integrating the first-order Ogden hyperelastic model to construct a computed tomography (CT) based porous hyperelastic Ogden model (CT-PHO) for human alveolar bone. Model parameters are derived by combining results from micro-CT, nanoindentation experiments, and uniaxial compression tests. Compared to previous predictive models, the CT-PHO model shows a lower root mean square error (RMSE) under all bone density conditions. Simulation results using the CT-PHO model parameters in uniaxial compression experiments demonstrate more accurate prediction of the mechanical behavior of alveolar bone under compression. Further prediction and validation with different individual human alveolar bone samples yield accurate results, confirming the generality of the CT-PHO model. The study suggests that the CT-PHO model proposed in this paper can estimate the material properties of human alveolar bone and may eventually be used for bone reconstruction simulations to guide clinical treatment.
Humans
;
Tomography, X-Ray Computed/methods*
;
Porosity
;
Alveolar Process/physiology*
;
Bone Density
;
Computer Simulation
;
Elasticity
;
X-Ray Microtomography
;
Stress, Mechanical
;
Finite Element Analysis
;
Models, Biological

Result Analysis
Print
Save
E-mail