1.Effect of aquaporin 5 on TLR4/MyD88/NF-κB signaling pathway in Sjögren syndrome rats.
Lixiu ZHU ; Renli CHEN ; Sujuan ZHOU ; Ye LIN ; Yirong TANG ; Zhen YE
Journal of Peking University(Health Sciences) 2025;57(5):875-883
OBJECTIVE:
To investigate the effect of aquaporin 5 (AQP5) on Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor κB (NF-κB) signaling pathway in Sjögren syndrome (SS) rats.
METHODS:
The SS gene expression data sets GSE406611 and GSE84844 were extracted from the Gene Expression Omnibus (GEO), and the AQP5 mRNA expression was analyzed by R software. The rat SS model was constructed. The successfully modeled rats were divided into SS group, SS+NC group, and SS+pc group, 10 rats in each group; and 10 rats were set as Normal group. The rats in the SS+NC group were injected with 10 μg of rno-pcDNA3.1-AQP5-NC at the submandibular gland, subcutaneously every day for 28 days. The rats in the SS+pc group were injected with 10 μg of rno-pcDNA3.1-AQP5 at the submandibular gland, subcutaneously every day for 28 days. The enzyme-linked immunosorbent assay (ELISA) kit was used to detect the content of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the serum. High-throughput sequencing was used to identify the target genes. Quantitative real-time PCR (qPCR) and Western blot were used to detect the mRNA and protein expressions of AQP5, TLR4, MyD88, and NF-κB in the rat submandibular gland tissue.
RESULTS:
In the SS dataset GSE406611 and GSE84844, the mRNA expression of AQP5 in SS was significantly reduced. Compared with the Normal group, the content of TNF-α and IL-1β in the serum, the mRNA and protein expressions of TLR4, MyD88, and NF-κB in the SS group were significantly increased, the mRNA and protein expressions of AQP5 were significantly decreased. After overexpression of AQP5, the content of TNF-α and IL-1β in the serum, the mRNA and protein expressions of TLR4, MyD88, and NF-κB in the SS+pc group were significantly decreased, the mRNA and protein expressions of AQP5 were significantly increased. The differences were statistically significant (all P < 0.05).
CONCLUSION
The expression of AQP5 is involved in the progression of SS. Increasing the expression of AQP5 can significantly inhibit inflammatory stress and reduce the pathological damage of submandibular gland tissue. This may be related to the inhibition of TLR4/MyD88/NF-κB conduction.
Animals
;
Toll-Like Receptor 4/genetics*
;
Myeloid Differentiation Factor 88/genetics*
;
Aquaporin 5/metabolism*
;
Sjogren's Syndrome/genetics*
;
Signal Transduction
;
NF-kappa B/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Interleukin-1beta/metabolism*
;
Female
2.Decreased expression of Toll-like receptor 4 and 5 during progression of prostate transformation in transgenic adenocarcinoma of mouse prostate mice.
Ju Hee HAN ; Jong Hwan PARK ; Bo Yeon KIM ; Seo Na CHANG ; Tae Hyoun KIM ; Jae Hak PARK ; Dong Jae KIM
Journal of Veterinary Science 2015;16(3):281-287
Chronic inflammation has been considered an important risk factor for development of prostate cancer. Toll-like receptors (TLRs) recognize microbial moieties or endogenous molecules and play an important role in the triggering and promotion of inflammation. In this study, we examined whether expression of TLR4 and TLR5 was associated with progression of prostate transformation in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. The expression of TLR4 and TLR5 was evaluated by immunohistochemisty in formalin-fixed paraffin-embedded prostate tissue from wild-type (WT) and TRAMP mice. Normal prostate tissue from WT mice showed strong expression of TLR4 and TLR5. However, TLR4 expression in the prostate tissue from TRAMP mice gradually decreased as pathologic grade became more aggressive. TLR5 expression in the prostate tissue from TRAMP mice also decreased in low-grade prostate intraepithelial neoplasia (PIN), high-grade PIN and poorly differentiated adenocarcinoma. Overall, our results suggest that decreased expression of TLR4 and TLR5 may contribute to prostate tumorigenesis.
Adenocarcinoma/etiology/*genetics
;
Animals
;
Cell Transformation, Neoplastic
;
Disease Progression
;
*Gene Expression Regulation, Neoplastic
;
Humans
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Prostatic Neoplasms/etiology/*genetics
;
Toll-Like Receptor 4/*genetics/metabolism
;
Toll-Like Receptor 5/*genetics/metabolism
3.Cloning, expression and functional analysis of the duck Toll-like receptor 5 (TLR5) gene.
Yuqiang CHENG ; Yingjie SUN ; Hengan WANG ; Shuduan SHI ; Yaxian YAN ; Jing LI ; Chan DING ; Jianhe SUN
Journal of Veterinary Science 2015;16(1):37-46
Toll-like receptor 5 (TLR5) is responsible for the recognition of bacterial flagellin in vertebrates. In the present study, the first TLR5 gene in duck was cloned. The open reading frame (ORF) of duck TLR5 (dTLR5) cDNA is 2580 bp and encodes a polypeptide of 859 amino acids. We also cloned partial sequences of myeloid differentiation factor 88, 2'-5'-oligoadenylate synthetase (OAS), and myxovirus resistance (Mx) genes from duck. dTLR5 mRNA was highly expressed in the bursa of Fabricius, spleen, trachea, lung, jejunum, rectum, and skin; moderately expressed in the muscular and glandular tissues, duodenum, ileum, caecum, and pancreas; and minimally expressed in the heart, liver, kidney, and muscle. DF-1 or HeLa cells transfected with DNA constructs encoding dTLR5 can activate NF-kappaB leading to the activation of interleukin-6 (IL-6) promoter. When we challenged ducks with a Herts33 Newcastle disease virus (NDV), mRNA transcription of the antiviral molecules Mx, Double stranded RNA activated protein kinase (PKR), and OAS was up-regulated in the liver, lung, and spleen 1 and 2 days post-inoculation.
2',5'-Oligoadenylate Synthetase/genetics/metabolism
;
Animals
;
Cell Line
;
*Cloning, Molecular
;
Ducks
;
Gene Expression Regulation/*physiology
;
Humans
;
Immunity, Innate
;
Myeloid Differentiation Factor 88/genetics/metabolism
;
Myxovirus Resistance Proteins/genetics/metabolism
;
Newcastle Disease/metabolism
;
Newcastle disease virus/classification
;
RNA, Messenger/genetics/metabolism
;
Species Specificity
;
Toll-Like Receptor 5/genetics/*metabolism
4.Mechanism of psoriasis generation in animal models.
Acta Pharmaceutica Sinica 2013;48(6):809-813
Psoriasis is a chronic inflammatory disease related to genome-wide and surroundings, it is important to develop a suitable animal model to research psoriasis pathogenesis and evolve pharmacotherapeutics. With the development of transgenetic technology in the past few years, psoriasis virulence gene animal model become a hotspot. Research of animal model of human psoriasis genes is reviewed in the paper.
Aminoquinolines
;
toxicity
;
Amphiregulin
;
Animals
;
Disease Models, Animal
;
EGF Family of Proteins
;
genetics
;
metabolism
;
Humans
;
Keratin-14
;
genetics
;
metabolism
;
Keratin-5
;
genetics
;
metabolism
;
Keratinocytes
;
metabolism
;
Membrane Glycoproteins
;
agonists
;
Mice, Transgenic
;
Psoriasis
;
etiology
;
genetics
;
metabolism
;
Receptor, TIE-2
;
genetics
;
metabolism
;
STAT3 Transcription Factor
;
genetics
;
metabolism
;
Toll-Like Receptor 7
;
agonists
;
Transforming Growth Factor beta1
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail