1.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
2.Diketopiperazines with anti-skin inflammation from marine-derived endophytic fungus Aspergillus sp. and configurational reassignment of aspertryptanthrins.
Jin YANG ; Xianmei XIONG ; Lizhi GONG ; Fengyu GAN ; Hanling SHI ; Bin ZHU ; Haizhen WU ; Xiujuan XIN ; Lingyi KONG ; Faliang AN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):980-989
Two novel diketopiperazines (1 and 5), along with ten known compounds (2-4, 6-12) demonstrating significant skin inflammation inhibition, were isolated from a marine-derived fungus identified as Aspergillus sp. FAZW0001. The structural elucidation and configurational reassessments of compounds 1-5 were established through comprehensive spectral analyses, with their absolute configurations determined via single crystal X-ray diffraction using Cu Kα radiation, Marfey's method, and comparison between experimental and calculated electronic circular dichroism (ECD) spectra. Compounds 1, 2, and 8 exhibited significant anti-inflammatory activities in Propionibacterium acnes (P. acnes)-induced human monocyte cell lines. Compound 8 demonstrated the ability to down-regulate interleukin-1β (IL-1β) expression by inhibiting Toll-like receptor 2 (TLR2) expression and modulating the activation of myeloid differentiation factor 88 (MyD88), mitogen-activated protein kinase (MAPK), and nuclear factor κB (NF-κB) signaling pathways, thus reducing the cellular inflammatory response induced by P. acnes. Additionally, compound 8 showed the capacity to suppress mitochondrial reactive oxygen species (ROS) production and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation, thereby reducing IL-1β maturation and secretion. A three-dimensional quantitative structure-activity relationships (3D-QSAR) model was applied to compounds 5-12 to analyze their anti-inflammatory structure-activity relationships.
Humans
;
Aspergillus/chemistry*
;
Diketopiperazines/isolation & purification*
;
Anti-Inflammatory Agents/isolation & purification*
;
Interleukin-1beta/genetics*
;
Toll-Like Receptor 2/immunology*
;
Propionibacterium acnes/drug effects*
;
NF-kappa B/genetics*
;
Molecular Structure
;
Myeloid Differentiation Factor 88/immunology*
;
Monocytes/immunology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Cell Line
3.Mechanism of sophocarpine in treating experimental colitis in mice.
Jian-mei ZHANG ; Ya-bi ZHU ; Xing DENG ; Chang-xiong WANG ; Shuang-mei LUAN ; Yue-xiang CHEN
China Journal of Chinese Materia Medica 2015;40(15):3081-3087
To study the preventive effect of sophocarpine (Soc) on dextran sulfate sodium (DSS)-induced colitis in mice, in order to analyze the influence of Soc on toll like receptor 4 (TLR4)/mitogen-activated protein kinases (MAPKs) and janus tyrosine kinase 2 signal transducer and activator of transcription 3 (JAK2/STAT3) signal pathways in mice intestinal tissues. The mice was given 2.5% DSS for 6 days to induce the acute colitis model. The Soc-treated group was intraperitoneally injected with sophocarpine 30 mg · kg(-1) · d(-1) since the day before the experiment to the end. The disease activity index (DAI) was assessed everyday, and the colonic morphology and histological damage were observed with HE staining. The mRNA expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were detected by real-time RT-PCR. The changes in key protein kinase p38 mitogen-activated protein kinase (p38MAPK), c-Jun NH2-terminal protein kinase1/2 (JNK1/2), extracellular signal-regulated kinase1/2 (ERK1/2), JAK2, STAT3 in TLR4/MAPKs and JAK2/STAT3 signaling pathways were detected by western blot. The result showed that the model group showed statistical significance in body weight, DAI, colon length and histopathological changes compared with the normal group (P <0.05); however, the Soc-treated group showed significant improvements in the above indexes compared with the model group (P <0.05). TNF-α, IL-1β and IL-6 in the model group was significantly higher than that in the normal group (P <0.05), but lowered in the Soc-treated group to varying degrees (P <0.05). In the normal group, the expressions of TLR4 and the phosphorylation of P38, JNK1/2, JAK2, STAT3 were at low levels; in the model group, the phosphorylation of P38, JNK1/2, JAK2, STAT3 increased; the Soc-treated group showed a decrease in TLR4 expression compared with the model group, with notable declines in the phosphorylation of TLR4, P38, JNK1/2, JAK2, STAT3. These findings indicate that Soc can inhibit TLR4/MAPKs, K2/STAT3 signaling pathway activation, reduce the expression of proinflammatory cytokines TNF-α, IL-1β and IL-6 and relieve inflammatory reactions, so as to effectively prevent experimental colitis.
Alkaloids
;
pharmacology
;
therapeutic use
;
Animals
;
Colitis
;
drug therapy
;
immunology
;
pathology
;
Cytokines
;
genetics
;
Janus Kinase 2
;
antagonists & inhibitors
;
physiology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Phosphorylation
;
STAT3 Transcription Factor
;
antagonists & inhibitors
;
physiology
;
Toll-Like Receptor 4
;
antagonists & inhibitors
;
physiology
4.Role of Toll-like receptor 2 in primary immune thrombocytopenia.
Hui-Yuan LI ; Dong-Lei ZHANG ; Xian ZHANG ; Rong-Feng FU ; Min XUAN ; Ren-Chi YANG
Journal of Experimental Hematology 2014;22(4):1033-1037
The aim of this study was to explore the role of Toll-like receptor (TLR) 2 in primary immune thrombocytopenia (ITP) by detecting TLR2 expression in the peripheral blood lymphocytes of patients with ITP and evaluating the role of TLR2 activation on inflammatory cytokine secretion. A total of 39 ITP patients and 21 normal controls were enrolled in this study. The expression of TLR2 was detected by real-time PCR and flow cytometry, and the concentration of IL-6 and TNF-α in culture supernatant of PBMNC treated with pam3CSK4 for 48 hours were detected by ELISA. The results showed that the expression of TLR2 mRNA in active ITP patients (3.561 ± 0.741) was significantly higher than that in normal controls (1.750 ± 0.314) (P < 0.05), but there was no statistically significant difference between remission ITP patients (2.333 ± 0.448) and normal controls (P > 0.05) . Flow cytometry analysis found that the TLR2 was not expressed on T and B cells, but expressed on all monocytes both from ITP patients and normal controls. Further activation experiment showed that TLR2 activation in vitro could induce the expression of IL-6 (1644 ± 634.0 vs 4111 ± 525.2 pg/ml) and TNF-α (75.37 ± 22.31 vs 326.0 ± 109.9 pg/ml) in PBMNC from ITP patients (both P < 0.05), but just could promote IL-6 expression in normal controls (2119 ± 636.9 vs 4671 ± 315.9 pg/ml)(P < 0.05). It is concluded that the expression of TLR2 mRNA is up-regulated in PBMNC of ITP patients, and this increased TLR2 maybe participate in ITP through inducing secretion of inflammatory cytokines.
Adolescent
;
Adult
;
Aged
;
Case-Control Studies
;
Cells, Cultured
;
Child
;
Female
;
Humans
;
Interleukin-6
;
immunology
;
Male
;
Middle Aged
;
RNA, Messenger
;
genetics
;
Thrombocytopenia
;
immunology
;
metabolism
;
pathology
;
Toll-Like Receptor 2
;
metabolism
;
Tumor Necrosis Factor-alpha
;
immunology
;
Young Adult
5.Role of Toll-like receptor 2/4-nuclear factor-κB signaling pathway in invasion of Mycobacterium tuberculosis to mouse dendritic cells.
Qian XU ; Meng-mei JIN ; Wen-wen ZHENG ; Li ZHU ; Shui-ling XU
Journal of Zhejiang University. Medical sciences 2014;43(2):200-206
OBJECTIVETo investigate the mechanism of Mycobacterium tuberculosis invasion to mouse dendritic cells (DC).
METHODSMycobacterium tuberculosis strain H37Rv was co-cultured with mouse DC2.4 cells.The mRNA expression of Toll-like receptor 2/4(TLR2/4) in DC2.4 cells was detected by fluorescent quantitative real-time PCR and the protein expression of nuclear factor κB(NF-κB) was assessed by Western blotting.The extracellular concentration of tumor necrosis factor α(TNF-α) was measured by ELISA methods during Mycobacterium Tuberculosis invasion.Indirect immunofluorescent staining and flow cytometry assay were used to detect the expression of CD80 and CD86 on DC2.4 cells before and after invasion.
RESULTSThe invasion of Mycobacterium tuberculosis in DC2.4 cells was observed after 2 h of co-incubation.The rates of invasion were (37.9±5.6)%,(51.2±7.6)%,(57.2±8.9)% and(63.9±6.8)% at 6,8,10 and 12 h after co-incubation,respectively.The mRNA expression level of TLR2 /4 was significantly increased at 6 h but decreased at 10 h after co-incubation.The expressions of NF-κB p65 and TNF-α were higher in DC2.4 cells after being invaded by 6,8,and 10 h and then gradually decreased.CD80 and CD86 expression were increased on DC2.4 at 6 h after co-incubation.
CONCLUSIONInvasion of Mycobacterium tuberculosis strain H37Rv to DC might enhance its antigen-presenting function through activation of TLR2/4-NF-kB signaling pathway.
Animals ; B7-1 Antigen ; metabolism ; B7-2 Antigen ; metabolism ; Cells, Cultured ; Dendritic Cells ; immunology ; metabolism ; Mice ; Mycobacterium tuberculosis ; NF-kappa B ; metabolism ; Signal Transduction ; Toll-Like Receptor 2 ; metabolism ; Toll-Like Receptor 4 ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism
6.Expression and significance of Toll like receptor 2 and Toll like receptor 4 in chronic rhinosinusitis.
Xin WANG ; Wenjun JI ; Yuan XU ; Huamin GUO ; Chunyuan ZHAO
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2014;28(17):1285-1288
OBJECTIVE:
To explore the role of the innate immune factors TLR2 and TLR4 in the pathogenesis of chronic rhinosinusitis (CRS) by detecting their expression in different clinical types of CRS and the normal control group.
METHOD:
Immunohistochemistry was used to detect the expression of TLR2 and TLR4 respectively in 21 cases (chronic rhinosinusitis with nasal polyps, CRSwNP) group, 15 cases (chronic rhinosinusitis without nasal polyos, CRSsNP) group, 11 cases recurrent CRSwNP group and 13 cases control group. Positive cells were counted under the microscope artificially, Mann-Whitney U analysis was applied for the ranked data, and one-way anova analysis was adopted to analyze the experimental group and control group.
RESULT:
(1) TLR2 and TLR4 expression had the same characteristics. Expression mainly concentrated in parts of the whole layer of epithelial basement membrane, cytoplasm of glandular cells, very few inflammatory cells such as monocytes and plasma cells in the cytoplasm, sometimes unknown cell nuclei positive expression. (2) The glandular cells were stained manual counting and color grading. TLR2 and TLR4 packet application Wilcoxon rank test Mann-Whitney U test analysis was not statistically significant (P > 0.05), measurement data within the group variance statistical difference between the groups (P < 0.05).
CONCLUSION
The Nasal mucosa can produce the innate immune factors TLR2 and TLR4. The different expression of TLR2 and TLR4 in the various clinical types of CRS suggests that they play the certain role in the pathogenesis of CRS.
Chronic Disease
;
Epithelial Cells
;
immunology
;
metabolism
;
Female
;
Humans
;
Immunohistochemistry
;
Male
;
Nasal Mucosa
;
immunology
;
metabolism
;
Nasal Polyps
;
immunology
;
metabolism
;
Rhinitis
;
immunology
;
metabolism
;
Sinusitis
;
immunology
;
metabolism
;
Toll-Like Receptor 2
;
metabolism
;
Toll-Like Receptor 4
;
metabolism
7.Exposure to heat-inactivated Trichophyton rubrum resulting in a limited immune response of human keratinocytes.
Xiao-Qiang HUANG ; Jin-Ling YI ; Song-Chao YIN ; Rong-Zhang CHEN ; Mei-Rong LI ; Zi-Jian GONG ; Wei LAI ; Jian CHEN
Chinese Medical Journal 2013;126(2):215-219
BACKGROUNDTrichophyton rubrum (T. rubrum) represents the most important agent of dermatophytosis in humans. T. rubrum infection causes slight inflammation, and tends to be chronic and recurrent. It is suggested that it may result from the failure of epithelial cells to recognize T. rubrum effectively and initiate effective immune responses. The C-type lectin receptors (CLR) and toll-like receptors (TLR) are the two major pattern recognition receptors (PRRs) that recognize fungal components. Therefore, the purpose of the study was to analyze the expression of those PRRs and the cytokines in HaCaT cells stimulated with heat-inactivated T. rubrum conidia and hyphae, respectively.
METHODSHaCaT cells were unstimulated or stimulated with heat-inactivated T. rubrum conidia and hyphae (1×10(6) and 1.5×10(5) colony-forming unit (CFU) in 2 ml medium, respectively) for 6, 12 and 24 hours. The mRNA expression of PRRs involved in recognizing fungal pathogen-associated molecular patterns (PAMPs) and signaling molecules were measured by quantitative reverse transcription polymerase chain reaction (RT-PCR). Meanwhile, surface toll-like receptor (TLR) 2, TLR4 and Dectin-1 were analyzed by fluorescence-activated cell sorter (FACS) 24 hours after treatment. The cytokines were detected in cell culture supernatants of HaCaT cells in 12 and 24 hours after treatment.
RESULTSHaCaT cells constitutively expressed mRNA of membrane-bound TLR1, 2, 4 and 6, Dectin1 and DC-SIGN, but not Dectin-2 or Mincle. Heat-killed T. rubrum did not significantly upregulate gene transcriptions of the PRRs of HaCaT cells. Heat-inactivated T. rubrum conidia significantly reduced the surface expression of TLR2 and Dectin-1, and suppressed the secretions of interferon-inducible protein-10 (IP-10) and monocyte chemotactic protein-1 (MCP-1) of HaCaT cells, while heat-killed T. rubrum hyphae significantly induced the secretions of IP-10 and MCP-1.
CONCLUSIONThe cell-wall antigens of T. rubrum fail to activate transcriptional expression of PRRs and induce a lower immune response of HaCaT cells by limited cytokines secretion.
Cells, Cultured ; Cytokines ; biosynthesis ; Humans ; Keratinocytes ; immunology ; Lectins, C-Type ; genetics ; physiology ; RNA, Messenger ; analysis ; Receptors, Pattern Recognition ; genetics ; physiology ; Toll-Like Receptor 2 ; physiology ; Trichophyton ; immunology
8.Changes of FoxP3, CD4(+)CD25(+) regulatory T cells, TLR2 and TLR9 in children with infectious mononucleosis.
Qiang WANG ; Zuo-Feng WANG ; Mei CAO ; Zhi-Ying WANG
Journal of Experimental Hematology 2013;21(2):469-473
The aim of this study was to investigate the effects of TLR2, TLR9, CD4(+)CD25(+) regulatory T cells (Treg) and transcription factor FoxP3 in the pathogenesis of children with infectious mononucleosis (IM). Thirty-five acute IM patients admitted in our hospital from April 2010 to January 2011 were enrolled in this study. Thirty-five healthy subjects were taken as control. The thirty-five patients before treatment were considered as patients in acute stage, after treatment and without clinical symptom they were thought as patients in recovery stage. The expression levels of TLR2, TLR9 and FoxP3 mRNA were detected by real time PCR using SYBR Green I. The expression of T lymphocyte subset CD4(+)CD25(+) in peripheral blood mononuclear cells was detected by flow cytometry. The results showed that the relative levels of TLR2 mRNA (4.03 ± 0.56), TLR9 mRNA (8.88 ± 1.56) in peripheral blood mononuclear cells of IM patients in acute stage were significantly higher than those of the controls [TLR2 mRNA (2.22 ± 0.57), TLR9 mRNA (3.63 ± 1.30)] and IM patients in recovery stage [TLR2 mRNA (2.76 ± 0.83), TLR9 mRNA (5.34 ± 1.60)] (P < 0.01). The result of CD4(+)CD25(+) (2.38 ± 1.32%) and relative level of FoxP3 mRNA(2.82 ± 0.90) in peripheral blood mononuclear cells of IM patients in acute stage were lower than those of the control [CD4(+)CD25(+) (7.85 ± 1.97%), FoxP3 mRNA (4.65 ± 1.23) ] (P < 0.01). There was no significant difference in CD4(+)CD25(+) (6.81 ± 1.84%), FoxP3 mRNA(4.11 ± 1.37) levels between IM patients in recovery stage and the controls (P > 0.05). It is concluded that the expression of CD4(+)CD25(+)regulatory T cells is reduced, and its special transcription factor FoxP3 mRNA is down-regulated, but expression levels of TLR2 mRNA, TLR9 mRNA are up-regulated in IM patients of acute stage.
Case-Control Studies
;
Child
;
Child, Preschool
;
Female
;
Flow Cytometry
;
Forkhead Transcription Factors
;
metabolism
;
Humans
;
Infectious Mononucleosis
;
diagnosis
;
immunology
;
metabolism
;
Interleukin-2 Receptor alpha Subunit
;
metabolism
;
Male
;
RNA, Messenger
;
metabolism
;
T-Lymphocytes, Regulatory
;
immunology
;
metabolism
;
Toll-Like Receptor 2
;
metabolism
;
Toll-Like Receptor 9
;
metabolism
9.A new synthetic chalcone derivative, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-kappaB pathway in BV2 microglial cells.
Young Han LEE ; Seung Hyun JEON ; Se Hyun KIM ; Changyoun KIM ; Seung Jae LEE ; Dongsoo KOH ; Yoongho LIM ; Kyooseob HA ; Soon Young SHIN
Experimental & Molecular Medicine 2012;44(6):369-377
Microglial cells are the resident innate immune cells that sense pathogens and tissue injury in the central nervous system (CNS). Microglial activation is critical for neuroinflammatory responses. The synthetic compound 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139) is a novel chalcone-derived compound. In this study, we investigated the effects of DK-139 on Toll-like receptor 4 (TLR4)-mediated inflammatory responses in BV2 microglial cells. DK-139 inhibited lipopolysaccharide (LPS)-induced TLR4 activity, as determined using a cell-based assay. DK-139 blocked LPS-induced phosphorylation of IkappaB and p65/RelA NF-kappaB, resulting in inhibition of the nuclear translocation and trans-acting activity of NF-kappaB in BV2 microglial cells. We also found that DK-139 reduced the expression of NF-kappaB target genes, such as those for COX-2, iNOS, and IL-1beta, in LPS-stimulated BV2 microglial cells. Interestingly, DK-139 blocked LPS-induced Akt phosphorylation. Inhibition of Akt abrogated LPS-induced phosphorylation of p65/RelA, while overexpression of dominant-active p110CAAX enhanced p65/RelA phosphorylation as well as iNOS and COX2 expression. These results suggest that DK-139 exerts an anti-inflammatory effect on microglial cells by inhibiting the Akt/IkappaB kinase (IKK)/NF-kappaB signaling pathway.
Animals
;
Binding Sites
;
Cell Line
;
Chalcones/chemistry/*pharmacology
;
Cyclooxygenase 2/metabolism
;
I-kappa B Kinase/metabolism
;
Inflammation/*drug therapy
;
Interleukin-1beta/metabolism
;
Lipopolysaccharides/immunology
;
Microglia/*drug effects/immunology/metabolism
;
Molecular Dynamics Simulation
;
NF-kappa B/*antagonists & inhibitors
;
Nitric Oxide Synthase Type II/metabolism
;
Phosphorylation/drug effects
;
Protein Binding
;
Proto-Oncogene Proteins c-akt/*antagonists & inhibitors
;
Rats
;
Signal Transduction
;
Toll-Like Receptor 4/*antagonists & inhibitors/metabolism
;
Transcription Factor RelA/metabolism
10.Herpesviral infection and Toll-like receptor 2.
Ming-sheng CAI ; Mei-li LI ; Chun-fu ZHENG
Protein & Cell 2012;3(8):590-601
In the last decade, substantial progress has been made in understanding the molecular mechanisms involved in the initial host responses to viral infections. Herpesviral infections can provoke an inflammatory cytokine response, however, the innate pathogen-sensing mechanisms that transduce the signal for this response are poorly understood. In recent years, it has become increasingly evident that the Toll-like receptors (TLRs), which are germline-encoded pattern recognition receptors (PRRs), function as potent sensors for infection. TLRs can induce the activation of the innate immunity by recruiting specific intracellular adaptor proteins to initiate signaling pathways, which then culminating in activation of the nuclear factor kappa B (NF-κB) and interferon-regulatory factors (IRFs) that control the transcription of genes encoding type I interferon (IFN I) and other inflammatory cytokines. Furthermore, activation of innate immunity is critical for mounting adaptive immune responses. In parallel, common mechanisms used by viruses to counteract TLR-mediated responses or to actively subvert these pathways that block recognition and signaling through TLRs for their own benefit are emerging. Recent findings have demonstrated that TLR2 plays a crucial role in initiating the inflammatory process, and surprisingly that the response TLR2 triggers might be overzealous in its attempt to counter the attack by the virus. In this review, we summarize and discuss the recent advances about the specific role of TLR2 in triggering inflammatory responses in herpesvirus infection and the consequences of the alarms raised in the host that they are assigned to protect.
Adaptive Immunity
;
Gene Expression Regulation
;
immunology
;
Herpesviridae
;
physiology
;
Herpesviridae Infections
;
genetics
;
immunology
;
virology
;
Host-Pathogen Interactions
;
Humans
;
Immune Evasion
;
Immunity, Innate
;
Interferon Regulatory Factors
;
genetics
;
metabolism
;
Interferon Type I
;
biosynthesis
;
immunology
;
NF-kappa B
;
genetics
;
metabolism
;
Signal Transduction
;
genetics
;
immunology
;
Toll-Like Receptor 2
;
genetics
;
immunology

Result Analysis
Print
Save
E-mail