1.Simulation research on the influence of regular porous lattice scaffolds on bone growth.
Yutao MEN ; Lele WEI ; Baibing HU ; Pujun HAO ; Chunqiu ZHANG
Journal of Biomedical Engineering 2025;42(4):808-816
To assess the implantation effectiveness of porous scaffolds, it is essential to consider not only their mechanical properties but also their biological performance. Given the high cost, long duration and low reproducibility of biological experiments, simulation studies as a virtual alternative, have become a widely adopted and efficient evaluation method. In this study, based on the secondary development environment of finite element analysis software, the strain energy density growth criterion for bone tissue was introduced to simulate and analyze the cell proliferation-promoting effects of four different lattice porous scaffolds under cyclic compressive loading. The biological performance of these scaffolds was evaluated accordingly. The computational results indicated that in the early stages of bone growth, the differences in bone tissue formation among the scaffold groups were not significant. However, as bone growth progressed, the scaffold with a porosity of 70% and a pore size of 900 μm demonstrated markedly superior bone formation compared to other porosity groups and pore size groups. These results suggested that the scaffold with a porosity of 70% and a pore size of 900 μm was most conducive to bone tissue growth and could be regarded as the optimal structural parameter for bone repair scaffold. In conclusion, this study used a visualized simulation approach to pre-evaluate the osteogenic potential of porous scaffolds, aiming to provide reliable data support for the optimized design and clinical application of implantable scaffolds.
Tissue Scaffolds/chemistry*
;
Porosity
;
Finite Element Analysis
;
Tissue Engineering/methods*
;
Computer Simulation
;
Bone Development
;
Osteogenesis
;
Humans
;
Cell Proliferation
2.Three-dimensional printed scaffolds with sodium alginate/chitosan/mineralized collagen for promoting osteogenic differentiation.
Bo YANG ; Xiaojie LIAN ; Haonan FENG ; Tingwei QIN ; Song LYU ; Zehua LIU ; Tong FU
Journal of Biomedical Engineering 2025;42(5):1036-1045
The three-dimensional (3D) printed bone tissue repair guide scaffold is considered a promising method for treating bone defect repair. In this experiment, chitosan (CS), sodium alginate (SA), and mineralized collagen (MC) were combined and 3D printed to form scaffolds. The experimental results showed that the printability of the scaffold was improved with the increase of chitosan concentration. Infrared spectroscopy analysis confirmed that the scaffold formed a cross-linked network through electrostatic interaction between chitosan and sodium alginate under acidic conditions, and X-ray diffraction results showed the presence of characteristic peaks of hydroxyapatite, indicating the incorporation of mineralized collagen into the scaffold system. In the in vitro collagen release experiments, a weakly alkaline environment was found to accelerate the release rate of collagen, and the release amount increased significantly with a lower concentration of chitosan. Cell experiments showed that scaffolds loaded with mineralized collagen could significantly promote cell proliferation activity and alkaline phosphatase expression. The subcutaneous implantation experiment further verified the biocompatibility of the material, and the implantation of printed scaffolds did not cause significant inflammatory reactions. Histological analysis showed no abnormal pathological changes in the surrounding tissues. Therefore, incorporating mineralized collagen into sodium alginate/chitosan scaffolds is believed to be a new tissue engineering and regeneration strategy for achieving enhanced osteogenic differentiation through the slow release of collagen.
Chitosan/chemistry*
;
Alginates/chemistry*
;
Tissue Scaffolds/chemistry*
;
Printing, Three-Dimensional
;
Osteogenesis
;
Collagen/chemistry*
;
Cell Differentiation
;
Animals
;
Tissue Engineering/methods*
;
Cell Proliferation
;
Biocompatible Materials
;
Glucuronic Acid/chemistry*
;
Hexuronic Acids/chemistry*
3.Research progress of bioactive scaffolds in repair and regeneration of osteoporotic bone defects.
Yuangang WU ; Kaibo SUN ; Yi ZENG ; Bin SHEN
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(1):100-105
OBJECTIVE:
To summarize the research progress of bioactive scaffolds in the repair and regeneration of osteoporotic bone defects.
METHODS:
Recent literature on bioactive scaffolds for the repair of osteoporotic bone defects was reviewed to summarize various types of bioactive scaffolds and their associated repair methods.
RESULTS:
The application of bioactive scaffolds provides a new idea for the repair and regeneration of osteoporotic bone defects. For example, calcium phosphate ceramics scaffolds, hydrogel scaffolds, three-dimensional (3D)-printed biological scaffolds, metal scaffolds, as well as polymer material scaffolds and bone organoids, have all demonstrated good bone repair-promoting effects. However, in the pathological bone microenvironment of osteoporosis, the function of single-material scaffolds to promote bone regeneration is insufficient. Therefore, the design of bioactive scaffolds must consider multiple factors, including material biocompatibility, mechanical properties, bioactivity, bone conductivity, and osteogenic induction. Furthermore, physical and chemical surface modifications, along with advanced biotechnological approaches, can help to improve the osteogenic microenvironment and promote the differentiation of bone cells.
CONCLUSION
With advancements in technology, the synergistic application of 3D bioprinting, bone organoids technologies, and advanced biotechnologies holds promise for providing more efficient bioactive scaffolds for the repair and regeneration of osteoporotic bone defects.
Humans
;
Tissue Scaffolds/chemistry*
;
Bone Regeneration
;
Osteoporosis/therapy*
;
Tissue Engineering/methods*
;
Biocompatible Materials/chemistry*
;
Printing, Three-Dimensional
;
Calcium Phosphates/chemistry*
;
Osteogenesis
;
Ceramics
;
Cell Differentiation
;
Hydrogels
;
Bioprinting
;
Bone and Bones
4.Applications and prospects of graphene and its derivatives in bone repair.
Zhipo DU ; Yizhan MA ; Cunyang WANG ; Ruihong ZHANG ; Xiaoming LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(1):106-117
OBJECTIVE:
To summarize the latest research progress of graphene and its derivatives (GDs) in bone repair.
METHODS:
The relevant research literature at home and abroad in recent years was extensively accessed. The properties of GDs in bone repair materials, including mechanical properties, electrical conductivity, and antibacterial properties, were systematically summarized, and the unique advantages of GDs in material preparation, functionalization, and application, as well as the contributions and challenges to bone tissue engineering, were discussed.
RESULTS:
The application of GDs in bone repair materials has broad prospects, and the functionalization and modification technology effectively improve the osteogenic activity and material properties of GDs. GDs can induce osteogenic differentiation of stem cells through specific signaling pathways and promote osteogenic activity through immunomodulatory mechanisms. In addition, the parameters of GDs have significant effects on the cytotoxicity and degradation behavior.
CONCLUSION
GDs has great potential in the field of bone repair because of its excellent physical and chemical properties and biological properties. However, the cytotoxicity, biodegradability, and functionalization strategies of GDs still need to be further studied in order to achieve a wider application in the field of bone tissue engineering.
Graphite/pharmacology*
;
Tissue Engineering/methods*
;
Humans
;
Osteogenesis/drug effects*
;
Biocompatible Materials/pharmacology*
;
Bone Regeneration
;
Tissue Scaffolds/chemistry*
;
Cell Differentiation
;
Bone and Bones
;
Bone Substitutes/chemistry*
;
Animals
5.Application and progress of intelligent responsive hydrogels in articular cartilage injury repair.
Qingyu XU ; Baojian ZHANG ; Hongri LI ; Chengri LIU ; Shuhao BI ; Zhixiang YANG ; Yanqun LIU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(2):250-256
OBJECTIVE:
To review clinical application and research progress of different types of intelligent responsive hydrogels in repairing articular cartilage injury.
METHODS:
The animal experiments and clinical studies of different types of intelligent responsive hydrogels for repairing articular cartilage injury were summarized by reviewing relevant literature at home and abroad.
RESULTS:
The intrinsic regenerative capacity of articular cartilage following injury is limited. Intelligent responsive hydrogels, including those that are temperature-sensitive, light-sensitive, enzyme-responsive, pH-sensitive, and other stimuli-responsive hydrogels, can undergo phase transitions in response to specific stimuli, thereby achieving optimal functionality. These hydrogels can fill the injured cartilage area, promote the proliferation and differentiation of chondrocytes, and expedite the repair of the damaged site. With advancements in cartilage tissue engineering materials research, intelligent responsive hydrogels offer a novel approach and promising potential for the treatment of cartilage injuries.
CONCLUSION
Intelligent responsive hydrogel is a kind of flexible, controllable, efficient, and stable polymer, which has similar structure and functional properties to articular cartilage, and has become one of the important biomaterials for cartilage repair. However, there is still a lack of unified treatment standards and simple and efficient preparation technology.
Hydrogels/therapeutic use*
;
Cartilage, Articular/injuries*
;
Tissue Engineering/methods*
;
Humans
;
Animals
;
Chondrocytes/cytology*
;
Biocompatible Materials/chemistry*
;
Tissue Scaffolds/chemistry*
6.Research progress on strontium modified β-tricalcium phosphate composite biomaterials with immune regulatory properties.
Huanxi LI ; Xingyu SHAN ; Hongda WANG ; Zhimin TIAN ; Chunnuo HE ; Haoqiang ZHANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(4):511-517
OBJECTIVE:
To review the research progress of strontium (Sr) modified β-tricalcium phosphate composite biomaterials (SrTCP) promoting osteogenesis through immune regulation, and provides reference and theoretical support for the further development and research of SrTCP bone repair materials in bone tissue engineering in the future.
METHODS:
The literature about SrTCP promoting osteogenesis through immune regulation at home and abroad in recent years was extensively reviewed, and the preparation methods, immune mechanism and application of promoting osteogenesis were summarized and analyzed.
RESULTS:
The preparation methods of SrTCP include solid-state reaction sintering method, solution combustion quenching method, direct doping method, ion substitution method, etc. SrTCP has immune regulatory effects, which can play an immune regulatory role in inducing macrophage polarization, inducing angiogenesis and anti oxidative stress to promote osteogenesis.
CONCLUSION
At present, studies have shown that SrTCP can promote bone defect repair through immune regulation. Subsequent studies can start from the control of the optimal repair concentration and release rate of Sr, and further clarify the specific mechanism of SrTCP in promoting angiogenesis and anti oxidative stress, which is helpful to develop new materials for bone defect repair.
Calcium Phosphates/pharmacology*
;
Strontium/pharmacology*
;
Biocompatible Materials/pharmacology*
;
Humans
;
Osteogenesis/drug effects*
;
Tissue Engineering/methods*
;
Bone Substitutes/pharmacology*
;
Bone Regeneration/drug effects*
;
Animals
;
Tissue Scaffolds/chemistry*
;
Neovascularization, Physiologic/drug effects*
;
Macrophages/immunology*
7.Research progress on silk fibroin-nerve guidance conduits for peripheral nerve injury repair.
Fan DONG ; Yining WANG ; Zixiang WU ; Quanchang TAN
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(6):777-782
OBJECTIVE:
To review the research progress on silk fibroin (SF)-nerve guidance conduits (NGCs) for peripheral nerve injury (PNI) repair.
METHODS:
To review the recent literature on PNI and SF-NGCs, expound the concepts and treatment strategies of PNI, and summarize the construction of SF-NGCs and its application in PNI repair.
RESULTS:
Autologous nerve transplantation remains the "gold standard" for treating severe PNI. However, it's clinical applications are constrained by the limitations of limited donors and donor area damage. Natural SF exhibits good biocompatibility, low immunogenicity, and excellent physicochemical properties, making it an ideal candidate for the construction of NGCs. SF-NGCs constructed using different technologies have been found to have better biocompatibility and bioactivity. Their configurations can facilitate nerve regeneration by enhancing regenerative guidance and axonal extension. Besides, the adhesion, proliferation and differentiation of neurons and Schwann cells related to PNI repair can be effectively promote by NGCs. This accelerates the speed of nerve regeneration and improves the efficiency of repair. In addition, SF-NGCs can be used as regenerative scaffolds to provide biological templates for nerve repair.
CONCLUSION
The biodegradable natural SF has been extensively studied and demonstrated promising application prospects in the field of NGCs. It might be an effective and viable alternative to the "gold standard" for PNI treatment.
Fibroins/chemistry*
;
Peripheral Nerve Injuries/therapy*
;
Nerve Regeneration
;
Tissue Scaffolds/chemistry*
;
Humans
;
Guided Tissue Regeneration/methods*
;
Biocompatible Materials
;
Animals
;
Tissue Engineering/methods*
;
Schwann Cells/cytology*
;
Peripheral Nerves
;
Neurons/cytology*
8.Preparation of calcium phosphate nanoflowers and evaluation of their antioxidant and osteogenic induction capabilities in vitro.
Mingyu JIA ; Zhihong CHEN ; Huajian ZHOU ; Yukang ZHANG ; Min WU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(9):1203-1211
OBJECTIVE:
To investigate the antioxidant and osteogenic induction capabilities of calcium phosphate nanoflowers (hereinafter referred to as nanoflowers) in vitro at different concentrations.
METHODS:
Nanoflowers were prepared using gelatin, tripolyphosphate, and calcium chloride. Their morphology, microstructure, elemental composition and distribution, diameter, and molecular constitution were characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive spectroscopy. Femurs and tibias were harvested from twelve 4-week-old Sprague Dawley rats, and bone marrow mesenchymal stem cells (BMSCs) were isolated and cultured using the whole bone marrow adherent method, followed by passaging. The third passage cells were identified as stem cells by flow cytometry and then co-cultured with nanoflowers at concentrations of 0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, and 3.6 mg/mL. Cell counting kit 8 (CCK-8) assay was performed to screen for the optimal concentration that demonstrated the best cell viability, which was subsequently used as the experimental concentration for further studies. After co-culturing BMSCs with the screened concentration of nanoflowers, the biocompatibility of the nanoflowers was verified through live/dead cell staining, scratch assay, and cytoskeleton staining. The antioxidant capacity was assessed by using reactive oxygen species (ROS) fluorescence staining. The in vitro osteoinductive ability was evaluated via alkaline phosphatase (ALP) staining, alizarin red staining, and immunofluorescence staining of osteocalcin (OCN) and Runt-related transcription factor 2 (RUNX2). All the above indicators were compared with the control group of normally cultured BMSCs without the addition of nanoflowers.
RESULTS:
Scanning electron microscopy revealed that the prepared nanoflowers exhibited a flower-like structure; transmission electron microscopy scans discovered that the nanoflowers possessed a multi-layered structure, and high-magnification images displayed continuous atomic arrangements, with the nanoflower diameter measuring (2.00±0.25) μm; energy-dispersive spectroscopy indicated that the nanoflowers contained elements such as C, N, O, P, and Ca, which were uniformly distributed across the flower region; Fourier transform infrared spectroscopy analyzed the absorption peaks of each component, demonstrating the successful preparation of the nanoflowers. Through CCK-8 screening, the concentrations of 0.8, 1.2, and 1.6 mg/mL were selected for subsequent experiments. The live/dead cell staining showed that nanoflowers at different concentrations exhibited good cell compatibility, with the 1.2 mg/mL concentration being the best (P<0.05). The scratch assay results indicated that the cell migration ability in the 1.2 mg/mL group was superior to the other groups (P<0.05). The cytoskeleton staining revealed that the cell morphology was well-extended in all concentration groups, with no significant difference compared to the control group. The ROS fluorescence staining demonstrated that the ROS fluorescence in all concentration groups decreased compared to the control group after lipopolysaccharide induction (P<0.05), with the 1.2 mg/mL group showing the weakest fluorescence. The ALP staining showed blue-purple nodular deposits around the cells in all groups, with the 1.2 mg/mL group being significantly more prominent. The alizarin red staining displayed orange-red mineralized nodules around the cells in all groups, with the 1.2 mg/mL group having more and denser nodules. The immunofluorescence staining revealed that the expressions of RUNX2 and OCN proteins in all concentration groups increased compared to the control group, with the 1.2 mg/mL group showing the strongest protein expression (P<0.05).
CONCLUSION
The study successfully prepares nanoflowers, among which the 1.2 mg/mL nanoflowers exhibits excellent cell compatibility, antioxidant properties, and osteogenic induction capability, demonstrating their potential as an artificial bone substitute material.
Animals
;
Osteogenesis/drug effects*
;
Mesenchymal Stem Cells/drug effects*
;
Calcium Phosphates/pharmacology*
;
Rats, Sprague-Dawley
;
Rats
;
Antioxidants/chemistry*
;
Cells, Cultured
;
Cell Differentiation/drug effects*
;
Nanostructures/chemistry*
;
Tissue Engineering/methods*
;
Bone Marrow Cells/cytology*
;
Coculture Techniques
;
Tissue Scaffolds/chemistry*
;
Male
;
Biocompatible Materials/chemistry*
;
Cell Survival
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Cell Proliferation
9.Key role of biomechanical properties and material selection in rotator cuff repair.
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(12):1606-1614
OBJECTIVE:
To summarize the biomechanical research progress of biomaterials in rotator cuff injury repair and to explore how biomaterials can restore the native histological and mechanical properties of the rotator cuff.
METHODS:
The relevant literature at home and abroad was widely reviewed to analyze the biomechanical properties of synthetic biomaterials, naturally derived biomaterials, and tissue grafts in the repair of rotator cuff injuries.
RESULTS:
Synthetic biomaterials [such as poly (lactic-co-glycolic acid) and polycaprolactone] can provide initial stable mechanical support due to their adjustable mechanical properties and degradation characteristics, while naturally derived biomaterials (such as collagen and hyaluronic acid) can promote cell adhesion and tissue integration due to their biocompatibility and bioactivity. Tissue grafts exhibit significant clinical utility by providing immediate mechanical stability and promoting tendon-to-bone healing. Three-dimensional bioprinting technology provides new possibilities for personalized repair of rotator cuff injuries by precisely controlling the spatial distribution and mechanical properties of biomaterials.
CONCLUSION
Future studies should further optimize the design of bioprinting materials, cell sources, and scaffolds to achieve better mechanical properties and clinical efficacy of biomaterials in the repair of rotator cuff injuries.
Humans
;
Rotator Cuff Injuries
;
Biocompatible Materials/chemistry*
;
Biomechanical Phenomena
;
Tissue Scaffolds
;
Rotator Cuff/surgery*
;
Tissue Engineering/methods*
;
Polyesters
;
Polyglycolic Acid/chemistry*
;
Hyaluronic Acid/chemistry*
;
Collagen/chemistry*
;
Lactic Acid/chemistry*
;
Polylactic Acid-Polyglycolic Acid Copolymer
;
Bioprinting
;
Wound Healing
;
Printing, Three-Dimensional
;
Tendon Injuries/surgery*
10.Hydrodynamic finite element analysis of biological scaffolds with different pore sizes for cell growth and osteogenic differentiation.
Yibo HU ; Weijia LYU ; Wei XIA ; Yihong LIU
Journal of Peking University(Health Sciences) 2025;57(1):97-105
OBJECTIVE:
The triply periodic minimal surface (TPMS) Gyroid porous scaffolds were built with identical porosity while varying pore sizes were used by fluid mechanics finite element analysis (FEA) to simulate the in vivo microenvironment. The effects of scaffolds with different pore sizes on cell adhesion, proliferation, and osteogenic differentiation were evaluated through calculating fluid velocity, wall shear stress, and permeability in the scaffolds.
METHODS:
Three types of gyroid porous scaffolds, with pore sizes of 400, 600 and 800 μm, were established by nTopology software. Each scaffold had dimensions of 10 mm × 10 mm × 10 mm and isotropic internal structures. The models were imported to the ANSYS 2022R1 software, and meshed into over 3 million unstructured tetrahedral elements. Boun- dary conditions were set with inlet flow velocities of 0.01, 0.1, and 1 mm/s, and outlet pressure of 0 Pa. Pressure, velocity, and wall shear stress were calculated as fluid flowed through the scaffolds using the Navier-Stokes equations. At the same time, permeability was determined based on Darcy' s law. The compressive strength of scaffolds with different pore sizes was evaluated by ANSYS 2022R1 Static structural analysis.
RESULTS:
A linear relationship was observed between the wall shear stress and fluid velocity at inlet flow rates of 0.01, 0.1 and 1 mm/s, with increasing velocity leading to higher wall shear stress. At the flow velocity of 0.1 mm/s, the initial pressures of scaffolds with pore sizes of 400, 600 and 800 μm were 0.272, 0.083 and 0.079 Pa, respectively. The fluid pressures were gradually decreased across the scaffolds. The average flow velocities were 0.093, 0.078 and 0.070 mm/s, the average wall shear stresses 2.955, 1.343 and 1.706 mPa, permeabilities values 0.54×10-8 1.80×10-8 and 1.89×10-8 m2 in the scaffolds with pore sizes of 400, 600 and 800 μm. The scaffold surface area proportions according with optimal wall shear stress range for cell growth and osteogenic differentiation were calcula-ted, which was highest in the 600 μm scaffold (27.65%), followed by the 800 μm scaffold (17.30%) and the 400 μm scaffold (1.95%). The compressive strengths of the scaffolds were 23, 26 and 34 MPa for the 400, 600 and 800 μm pore sizes.
CONCLUSION
The uniform stress distributions appeared in all gyroid scaffold types under compressive stress. The permeabilities of scaffolds with pore sizes of 600 and 800 μm were significantly higher than the 400 μm. The average wall shear stress in the scaffold of 600 μm was the lowest, and the scaffold surface area proportion for cell growth and osteogenic differentiation the largest, indicating that it might be the most favorable design for supporting these cellular activities.
Tissue Scaffolds/chemistry*
;
Porosity
;
Finite Element Analysis
;
Osteogenesis
;
Cell Differentiation
;
Cell Proliferation
;
Tissue Engineering/methods*
;
Hydrodynamics
;
Humans
;
Stress, Mechanical
;
Cell Adhesion

Result Analysis
Print
Save
E-mail