1.Some thoughts on the research of mesenchymal stem cell exosomes and wound microenvironment.
Chinese Journal of Burns 2023;39(2):101-105
Since researchers have found that the conditioned medium and exosomes of mesenchymal stem cells (MSCs) had the biological effects equivalent to those of MSCs, MSC exosomes (MSC-Exos), the representative product of MSCs' paracrine effect, have become the research focus of the "cell-free" therapy of MSCs. However, most researchers currently use conventional culture condition to culture MSCs and then isolate exosomes for the treatment of wound or other diseases. Theoretically, the paracrine effect of MSCs is directly associated with the pathological condition of the wound (disease) microenvironment or in vitro culture condition, and their paracrine components and biological effects may be altered with the changes of the wound (disease) microenvironment or in vitro culture condition. Thus, the feasibility of using traditional culture condition to culture MSCs for exosome extraction for the treatment of different diseases without considering the actual situation of the disease to be treated needs further discussion. Therefore, the author suggests that the research of MSC-Exos should consider the microenvironment of the wound (disease) to be treated. as much as possible, otherwise the extracted MSC-Exos may not be "accurate" or may not really achieve the treatment effect of MSCs. In this article, we summarized some thoughts of the author and problems related to the researches about MSC-Exos and wound microenvironment, and hoped to discuss with researchers.
Exosomes
;
Cell- and Tissue-Based Therapy
;
Culture Media, Conditioned
;
Mesenchymal Stem Cells
2.Development and future promise of salivary gland organoids and salivary gland tumor organoids.
Bo WANG ; Ya Bing MU ; Guang Xiang ZANG
Chinese Journal of Stomatology 2022;57(5):535-539
Salivary glands are important organs in the oral and maxillofacial region. Environment and genetic factors may cause salivary gland tumors or non-neoplastic diseases, but the mechanisms of those diseases are still unclear. One of the important reasons is the short of researching media and model. As a new technique and research model, organoids have been widely used in the research of various diseases. Organoid culture plays a bridging role between two-dimensional cell culture and living animal models, and it is also the most promising translational research model that could connect the clinical research to basic research. This review will discuss the recent development of organoid techniques in the culture of normal salivary glands and salivary gland tumors, also their applications and challenges in tissue engineering, etiological research, and tumor therapy.
Animals
;
Cell Culture Techniques
;
Organoids
;
Salivary Gland Neoplasms
;
Salivary Glands
;
Tissue Engineering
3.Human Brain Slice Culture: A Useful Tool to Study Brain Disorders and Potential Therapeutic Compounds.
Xin-Rui QI ; Ronald W H VERWER ; Ai-Min BAO ; Rawien A BALESAR ; Sabina LUCHETTI ; Jiang-Ning ZHOU ; Dick F SWAAB
Neuroscience Bulletin 2019;35(2):244-252
Investigating the pathophysiological mechanisms underlying brain disorders is a priority if novel therapeutic strategies are to be developed. In vivo studies of animal models and in vitro studies of cell lines/primary cell cultures may provide useful tools to study certain aspects of brain disorders. However, discrepancies among these studies or unsuccessful translation from animal/cell studies to human/clinical studies often occur, because these models generally represent only some symptoms of a neuropsychiatric disorder rather than the complete disorder. Human brain slice cultures from postmortem tissue or resected tissue from operations have shown that, in vitro, neurons and glia can stay alive for long periods of time, while their morphological and physiological characteristics, and their ability to respond to experimental manipulations are maintained. Human brain slices can thus provide a close representation of neuronal networks in vivo, be a valuable tool for investigation of the basis of neuropsychiatric disorders, and provide a platform for the evaluation of novel pharmacological treatments of human brain diseases. A brain bank needs to provide the necessary infrastructure to bring together donors, hospitals, and researchers who want to investigate human brain slices in cultures of clinically and neuropathologically well-documented material.
Brain
;
drug effects
;
physiopathology
;
Brain Diseases
;
drug therapy
;
physiopathology
;
Humans
;
Tissue Culture Techniques
4.Kir2.1 Channel Regulation of Glycinergic Transmission Selectively Contributes to Dynamic Mechanical Allodynia in a Mouse Model of Spared Nerve Injury.
Yiqian SHI ; Yangyang CHEN ; Yun WANG
Neuroscience Bulletin 2019;35(2):301-314
Neuropathic pain is a chronic debilitating symptom characterized by spontaneous pain and mechanical allodynia. It occurs in distinct forms, including brush-evoked dynamic and filament-evoked punctate mechanical allodynia. Potassium channel 2.1 (Kir2.1), which exhibits strong inward rectification, is and regulates the activity of lamina I projection neurons. However, the relationship between Kir2.1 channels and mechanical allodynia is still unclear. In this study, we first found that pretreatment with ML133, a selective Kir2.1 inhibitor, by intrathecal administration, preferentially inhibited dynamic, but not punctate, allodynia in mice with spared nerve injury (SNI). Intrathecal injection of low doses of strychnine, a glycine receptor inhibitor, selectively induced dynamic, but not punctate allodynia, not only in naïve but also in ML133-pretreated mice. In contrast, bicuculline, a GABA receptor antagonist, induced only punctate, but not dynamic, allodynia. These results indicated the involvement of glycinergic transmission in the development of dynamic allodynia. We further found that SNI significantly suppressed the frequency, but not the amplitude, of the glycinergic spontaneous inhibitory postsynaptic currents (gly-sIPSCs) in neurons on the lamina II-III border of the spinal dorsal horn, and pretreatment with ML133 prevented the SNI-induced gly-sIPSC reduction. Furthermore, 5 days after SNI, ML133, either by intrathecal administration or acute bath perfusion, and strychnine sensitively reversed the SNI-induced dynamic, but not punctate, allodynia and the gly-sIPSC reduction in lamina IIi neurons, respectively. In conclusion, our results suggest that blockade of Kir2.1 channels in the spinal dorsal horn selectively inhibits dynamic, but not punctate, mechanical allodynia by enhancing glycinergic inhibitory transmission.
Animals
;
Bicuculline
;
pharmacology
;
Disease Models, Animal
;
Glycine
;
metabolism
;
Hyperalgesia
;
drug therapy
;
etiology
;
metabolism
;
Imidazoles
;
pharmacology
;
Inhibitory Postsynaptic Potentials
;
drug effects
;
physiology
;
Male
;
Mice, Inbred C57BL
;
Neurons
;
drug effects
;
metabolism
;
Neurotransmitter Agents
;
pharmacology
;
Peripheral Nerve Injuries
;
drug therapy
;
metabolism
;
Phenanthrolines
;
pharmacology
;
Potassium Channels, Inwardly Rectifying
;
antagonists & inhibitors
;
metabolism
;
Receptors, GABA-A
;
metabolism
;
Receptors, Glycine
;
metabolism
;
Strychnine
;
pharmacology
;
Synaptic Transmission
;
drug effects
;
physiology
;
Tissue Culture Techniques
;
Touch
5.Application of cell culture techniques in cultured meat-a review.
Guoqiang ZHANG ; Xinrui ZHAO ; Xueliang LI ; Xiulan SUN ; Jingwen ZHOU ; Guocheng DU ; Jian CHEN
Chinese Journal of Biotechnology 2019;35(8):1374-1381
As one of the top 10 breakthrough and emerging technologies in the world in 2018, cultured meat has attracted extensive attention due to its advantages of traceable origin, food safety and green sustainable development. Europe and the United States have invested a lot of resources to focus on research about cultured meat, which will affect our domestic meat and food market in the future. At present, the challenge of cultured meat production is how to efficiently simulate the growth environment of animal muscle tissue and realize large-scale production in bioreactor. Although cell tissue engineering has been deeply studied and achieved varying successful application, it is still difficult to obtain large-scale cultured meat production due to the high cost and technical requirements. Therefore, the development of efficient and safe cell culture technology is an urgent problem for large-scale cultured meat production, which can effectively reduce costs and achieve industrial application. In this review, we summarize the research progress of animal cell tissue culture technology used for cultured meat, and highlighted the current challenges and possible strategies in further applications.
Animals
;
Bioreactors
;
Cell Culture Techniques
;
Meat
;
Tissue Engineering
;
United States
6.Effects of exogenous IBA and fungal elicitor on growth of in vitro roots culture of Dysosma versipellis and production of podophyllotoxin.
Xiao-Ming TAN ; Li-Ying YU ; Hong-Zhen TANG ; Li-Chun ZHAO ; Ya-Qin ZHOU
China Journal of Chinese Materia Medica 2019;44(11):2226-2230
Using the White as basic medium, the effects of the exogenous IBA and endophytic fungal elicitor on the growth of in vitro roots cultures of Dysosma versipellis and production of podophyllotoxin were investigated in this study. The results showed that the IBA and the endophytic fungus Zasmidium syzygii elicitor could increase the content of podophyllotoxin of in vitro roots of D. versipellis after 3 weeks. The White medium added with 3 mg·L~(-1) IBA induced the highest increase of podophyllotoxin(1 830.86 μg·g~(-1)), which was 2.07 folds greater than the control, and followed by 1.5 mg·L~(-1) IBA, fungal elicitor, 1 mg·L~(-1) IBA, 0.5 mg·L~(-1) IBA and 4.5 mg·L~(-1) IBA, which was 1.82, 1.71, 1.63, 1.43 and 1.1 folds greater than the control, respectively. The results also showed that the growth of roots was certain positively correlated with the change of IBA concentration. Therefore, 3 mg·L~(-1) IBA was the most suitable for the production of podophyllotoxin in the in vitro roots of D. versipellis, and the stimulating effect of Z. syzygii fungal elicitor was between 1.5 mg·L~(-1) and 1 mg·L~(-1) IBA, which was a potential natural elicitor to induce the accumulation of podophyllotoxin in future production.
Ascomycota
;
Berberidaceae
;
chemistry
;
Endophytes
;
Plant Roots
;
drug effects
;
growth & development
;
Podophyllotoxin
;
biosynthesis
;
Tissue Culture Techniques
7.Study on tissue culture system of Polygonatum cyrtonema.
Yan HE ; Yu-Qiu ZHU ; Bo XIAO ; Shun-Hua FU ; Jin-Ping SI
China Journal of Chinese Materia Medica 2019;44(10):2032-2037
In order to accelerate the breeding of the excellent seedlings of Polygonatum cyrtonema,tissue culture system of P. cyrtonema was established through the comprehensive regulation of key factors( leaf age,leaf location,basic media and plant growth regulators) and cytological basis of callus formation and differentiation was analyzed through paraffin section. The results showed that the 30-day-old leaf base explanton medium MS+6-BA 1. 50 mg·L~(-1)+2,4-D 0. 20 mg·L~(-1) had the highest induction rate( 80. 00%). The callus was initiated from cells on leaf base epidermis and near cortex,formed by the differentiation of middle vascular bundle cells. The optimal medium for adventitious bud differentiation was MS+ 6-BA 4. 00 mg·L~(-1)+ 2,4-D 0. 20 mg·L~(-1) with the differentiation rate of90. 33%,and the average number of buds was 5. 16. The adventitious buds had two origin types: exogenous and endogenous origin,formed by callus proximal cells and callus internal meristemoid. The adventitious bud proliferation medium was screened by orthogonal design,which determined the optimum combination was MS+ 6-BA 2. 00 mg·L~(-1)+NAA 0. 10 mg·L~(-1) and MS+ 6-BA 2. 00 mg·L~(-1)+NAA 0. 20 mg·L~(-1). The tubers with three leaves were cut and inoculated in the medium 1/2 MS+IBA 2. 00 mg·L~(-1),showing the highest rooting rate of 94. 00%. The rooting seedlings transplanted into the peat-vermiculite( 1 ∶ 1) matrix grew healthy and the survival rate was over 85. 00%. This research provided a novel solution for large-scale cultivation of P. cyrtonema seedling.
Culture Media
;
Plant Growth Regulators
;
Plant Leaves
;
cytology
;
Polygonatum
;
growth & development
;
Regeneration
;
Seedlings
;
growth & development
;
Tissue Culture Techniques
8.Tissue Regeneration of Human Mesenchymal Stem Cells on Porous Gelatin Micro-Carriers by Long-Term Dynamic In Vitro Culture
LeTuyen NGUYEN ; Sumi BANG ; Insup NOH
Tissue Engineering and Regenerative Medicine 2019;16(1):19-28
BACKGROUND: Tissue engineering is a multidisciplinary field which attracted much attention in recent years. One of the most important issue in tissue engineering is how to obtain high cell numbers and tissue regeneration while maintaining appropriate cellular characteristics in vitro for restoring damaged or dysfunctional body tissues and organs. These demands can be achieved by the use of three dimensional (3D) dynamic cultures of cells combined with cell-adhesive micro-carriers. METHODS: In this study, human mesenchymal stem cells (hMSCs) were cultured in a wave-bioreactor system for up to 100 days, after seeding on Cultisphere-S porous gelatin micro-carriers. Cell counting was performed at the time points of 7, 12, 17, 31 days and compared to those of hMSCs cultured under static condition. Higher growth and proliferation rates was achieved in wave-type dynamic culture, when cell culture continued to day 31. A scanning electron microscope (SEM) photographs, both live and dead and MTT assays were taken to confirm the survival and distribution of cells on porous gelatin micro-carrier surfaces. The results of histological stains such as hematoxylin and eosin, Masson’s trichrome, Alcian blue and Alizarin red S also showed improved proliferation and tissue regeneration of hMSCs on porous gelatin micro-carriers. CONCLUSION: The experimental results demonstrated the effect and importance of both micro-carriers and bioreactor in hMSC expansion on cell proliferation and migration as well as extracellular matrix formation on the superficial and pore surfaces of the porous gelatin micro-carriers, and then their inter-connections, leading to tissue regeneration.
Alcian Blue
;
Bioreactors
;
Cell Count
;
Cell Culture Techniques
;
Cell Proliferation
;
Coloring Agents
;
Eosine Yellowish-(YS)
;
Extracellular Matrix
;
Gelatin
;
Hematoxylin
;
Humans
;
In Vitro Techniques
;
Mesenchymal Stromal Cells
;
Regeneration
;
Tissue Engineering
9.Safety and Biodistribution of Human Bone Marrow-Derived Mesenchymal Stromal Cells Injected Intrathecally in Non-Obese Diabetic Severe Combined Immunodefi ciency Mice: Preclinical Study
Mari Paz QUESADA ; David GARCÍA-BERNAL ; Diego PASTOR ; Alicia ESTIRADO ; Miguel BLANQUER ; Ana Ma GARCÍA-HERNÁNDEZ ; José M MORALEDA ; Salvador MARTÍNEZ
Tissue Engineering and Regenerative Medicine 2019;16(5):525-538
BACKGROUND: Mesenchymal stromal cells (MSCs) have potent immunomodulatory and neuroprotective properties, and have been tested in neurodegenerative diseases resulting in meaningful clinical improvements. Regulatory guidelines specify the need to perform preclinical studies prior any clinical trial, including biodistribution assays and tumourigenesis exclusion. We conducted a preclinical study of human bone marrow MSCs (hBM-MSCs) injected by intrathecal route in Non-Obese Diabetic Severe Combined Immunodeficiency mice, to explore cellular biodistribution and toxicity as a privileged administration method for cell therapy in Friedreich's Ataxia. METHODS: For this purpose, 3 × 10⁵ cells were injected by intrathecal route in 12 animals (experimental group) and the same volume of culture media in 6 animals (control group). Blood samples were collected at 24 h (n = 9) or 4 months (n = 9) to assess toxicity, and nine organs were harvested for histology and safety studies. Genomic DNA was isolated from all tissues, and mouse GAPDH and human β2M and β-actin genes were amplified by qPCR to analyze hBM-MSCs biodistribution. RESULTS: There were no deaths nor acute or chronic toxicity. Hematology, biochemistry and body weight were in the range of normal values in all groups. At 24 h hBM-MSCs were detected in 4/6 spinal cords and 1/6 hearts, and at 4 months in 3/6 hearts and 1/6 brains of transplanted mice. No tumours were found. CONCLUSION: This study demonstrated that intrathecal injection of hBM-MSCs is safe, non toxic and do not produce tumors. These results provide further evidence that hBM-MSCs might be used in a clinical trial in patients with FRDA.
Animals
;
Biochemistry
;
Body Weight
;
Bone Marrow
;
Brain
;
Cell- and Tissue-Based Therapy
;
Culture Media
;
DNA
;
Friedreich Ataxia
;
Heart
;
Hematology
;
Humans
;
Injections, Spinal
;
Mesenchymal Stromal Cells
;
Methods
;
Mice
;
Neurodegenerative Diseases
;
Neuroprotection
;
Reference Values
;
Severe Combined Immunodeficiency
;
Spinal Cord
10.Expression Pattern and Role of Klotho in Human Hair Follicles
Xing Hai JIN ; Long Quan PI ; Won Soo LEE
Annals of Dermatology 2019;31(5):511-517
BACKGROUND: Klotho protein plays a pivotal role in aging regulation. However, it is unclear whether klotho is expressed in human hair follicles and is correlated with hair growth. OBJECTIVE: The purpose of this study was to determine the expression pattern and role of klotho in human hair follicles. METHODS: We examined the klotho expression patterns in human hair follicles from young and aged donors. Furthermore, we examined the functional roles of klotho on human hair growth using klotho siRNA and klotho recombinant protein. RESULTS: Interestingly, klotho was expressed in human hair follicles at both gene and protein levels. In hair follicles, prominent klotho expression was mainly observed in the outermost regions of the outer root sheath and hair bulb matrix cells. Quantification of klotho protein expression in young and aged donors showed that klotho expression decreased with aging. In human hair follicle organ culture, klotho silencing promoted premature catagen induction and inhibited human hair growth. Otherwise, klotho protein prolonged human hair growth. CONCLUSION: These results indicate that klotho might be an important regulatory factor for human hair growth and hair cycle change.
Aging
;
Hair Follicle
;
Hair
;
Humans
;
Organ Culture Techniques
;
RNA, Small Interfering
;
Tissue Donors

Result Analysis
Print
Save
E-mail