1.Advances in the application of digital technology in orthodontic monitoring
WANG Qi ; LUO Ting ; LU Wei ; ZHAO Tingting ; HE Hong ; HUA Fang
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(1):75-81
During orthodontic treatment, clinical monitoring of patients is a crucial factor in determining treatment success. It aids in timely problem detection and resolution, ensuring adherence to the intended treatment plan. In recent years, digital technology has increasingly permeated orthodontic clinical diagnosis and treatment, facilitating clinical decision-making, treatment planning, and follow-up monitoring. This review summarizes recent advancements in digital technology for monitoring orthodontic tooth movement, related complications, and appliance-wearing compliance. It aims to provide insights for researchers and clinicians to enhance the application of digital technology in orthodontics, improve treatment outcomes, and optimize patient experience. The digitization of diagnostic data and the visualization of dental models make chair-side follow-up monitoring more convenient, accurate, and efficient. At the same time, the emergence of remote monitoring technology allows orthodontists to promptly identify oral health issues in patients and take corresponding measures. Furthermore, the multimodal data fusion method offers valuable insights into the monitoring of the root-alveolar relationship. Artificial intelligence technology has made initial strides in automating the identification of orthodontic tooth movement, associated complications, and patient compliance evaluation. Sensors are effective tools for monitoring patient adherence and providing data-driven support for clinical decision-making. The application of digital technology in orthodontic monitoring holds great promise. However, challenges like technical bottlenecks, ethical considerations, and patient acceptance remain.
2.Exploration of the mechanism of cognitive impairment induced by ketamine in mice based on metabolomics
Tingting LUO ; Xiaoxiao YAO ; Xinyi ZHAN ; Yiru MA ; Ting GAO ; Ying WEI
China Pharmacy 2025;36(12):1436-1441
OBJECTIVE To explore the potential mechanism of ketamine-induced cognitive impairment in mice based on metabolomics. METHODS Male C57BL/6 mice were randomly divided into control group and ketamine group (25 mg/kg), with 12 mice in each group. Each group of mice was intraperitoneally injected with normal saline or corresponding drugs, 4 times a day, for 10 consecutive days. On the last 2 days of drug administration, the cognitive behavior was evaluated by Y maze and novel object recognition test, and the histopathological changes in the prefrontal cortex (PFC) were observed. Ultra-high performance liquid chromatography-tandem mass spectrometry technology was used to analyze the changes of metabolites in PFC, screen for differential metabolites, and perform pathway enrichment analysis. RESULTS Compared with the control group, the morphology of PFC neurons in the ketamine group of mice was inconsistent. There were cavities around the nucleus, and the number of deeply stained cells increased. The mean optical density value of the Nissl staining positive area was significantly reduced, and the alternation rate and discrimination index were significantly reduced (P<0.05 or P<0.01). In the PFC tissue samples of mice of the two groups, there were a total of 114 differential metabolites, including 73 up-regulated and 41 down-regulated metabolites, including glutamine, succinic acid, ketoglutarate, and choline, etc. The differential metabolites mentioned above were mainly enriched in metabolism of alanine, aspartate and glutamate, metabolism of arginine and proline, γ aminobutyric acid synapses, pyrimidine metabolism, cholinergic synapses pathways, etc. CONCLUSIONS Ketamine can induce cognitive impairment in mice. Its neurotoxicity is related to abnormal synaptic transmission and energy metabolism, and neuroimmune regulation disorders.
3.Effect Mechanism and Law of Sterilization by 60Co-γ Ray Irradiation on Chemical Composition of Chinese Materia Medica: A Review
Tingting ZHU ; Jian RANG ; Rangyanpo LUO ; Rui GU ; Yue YANG ; Si LU ; Shihong ZHONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):306-314
60Co-γ ray irradiation has the unique advantages of high efficiency, strong penetration, operation at room temperature and no residue, which has been widely used in the sterilization of Chinese medicinal materials, decoction pieces, Chinese patent medicine. However, the irradiation effect may cause changes in the content of chemical components in Chinese materia medica or the emergence of new radiolysis products, leading to reduced efficacy and uncontrollable safety risks. This paper reviewed the relevant literature at home and abroad, summarized the effect of irradiation sterilization on various types of chemical compositions of Chinese medicinal materials and their preparations, and analyzed and explored the rule of change. The results showed that the content changes of various chemical components in Chinese materia medica after 60Co-γ ray irradiation sterilization varied. The contents of most flavonoids, terpenoids, phenylpropanoids and quinones decreased after irradiation, and the degree of decrease increased with the elevated irradiation dose. The contents of lignans, alkaloids, isoflavones and some terpenoids did not change significantly before and after irradiation, while the content changes of triterpenoid saponins, dihydroflavonols, chalcones, sugars and glycosides after irradiation were not yet uniform. Therefore, it is recommended to pay attention to the compositional changes of irradiated Chinese medicines, strengthen the research on the standards of irradiated Chinese medicines, and standardize the irradiation and sterilization of Chinese medicines in order to promote the healthy and rational application of irradiated Chinese medicines.
4.Effect of Xinfeng Capsules Combined with Chronic Disease Management of Traditional Chinese Medicine on Rapid Disease Control and Short-term Prognosis of Patients with Rheumatoid Arthritis
Dandan TIAN ; Hong ZHAO ; Man LUO ; Shanping WANG ; Li YANG ; Tingting ZHANG ; Xi CHEN ; Chuanbing HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):137-144
ObjectiveTo investigate the effects of Xinfeng capsules combined with chronic disease management of traditional Chinese medicine (TCM) on rapid disease control and short-term prognosis of patients with rheumatoid arthritis (RA). MethodsA total of 80 RA patients hospitalized in the Department of Rheumatology of The First Affiliated Hospital of Anhui University of Chinese Medicine from January 2022 to March 2024 were enrolled and randomly divided into an observation group (40 cases) and a control group (40 cases). The control group was treated with conventional methotrexate combined with standard chronic disease management, while the observation group was additionally treated with Xinfeng Capsules combined with TCM chronic disease management. The treatment course lasted 24 weeks. The outcomes were compared between two groups, including disease activity [28-joint disease activity score (DAS28), clinical disease activity index (CDAI), simplified disease activity index (SDAI)], visual analogue scale (VAS) for pain, TCM syndrome score, tender joint count (TJC), swollen joint count (SJC), morning stiffness duration, Health Assessment Questionnaire (HAQ), Self-Rating Anxiety Scale (SAS), Self-Rating Depression Scale (SDS), American College of Rheumatology (ACR) 20%, 50% and 70% response rates (ACR20/50/70), erythrocyte sedimentation rate (ESR), high-sensitivity C-reactive protein (hs-CRP), rheumatoid factor (RF), anti-cyclic citrullinated peptide antibody (CCP-Ab), interleukin (IL)-6, IL-1β, tumor necrosis factor-α (TNF-α), and serum immunoglobulin G (IgG). The Chronic Disease Self-Management Scale (CDSMS) was used to evaluate patients’ self-management ability, self-care ability, and nursing satisfaction. Patients were followed up for 12 weeks to assess prognosis, and COX regression analysis was performed to determine the impact on short-term prognosis. ResultsAfter treatment, TJC, SJC, morning stiffness duration, DAS28, CDAI, SDAI, VAS, TCM syndrome score, ESR, hs-CRP, RF, CCP-Ab, IL-6, IL-1β, TNF-α, IgG, HAQ, SAS, SDS, chronic disease self-management behavior, self-efficacy, and self-care ability all improved significantly in both groups compared with baseline (P<0.05,P<0.01). Compared with the control group, the observation group showed more significant improvements in TJC, SJC, morning stiffness duration, DAS28, CDAI, SDAI, VAS, TCM syndrome score, ESR, IL-1β, IgG, HAQ, SAS, SDS, self-care ability, chronic disease self-management behavior, and self-efficacy (P<0.05 or P<0.01). The ACR70 response rate and nursing satisfaction were significantly higher in the observation group than in the control group (P<0.01). COX regression analysis showed that Xinfeng capsules combined with TCM chronic disease management reduced the risk of poor short-term prognosis in RA patients. ConclusionXinfeng capsules combined with TCM chronic disease management facilitates rapid disease control in RA patients, effectively improves short-term prognosis, and plays an important role in the treatment of the disease.
5.Causal relationship between gut microbiota and diabetes based on Mendelian randomization.
Manjun LUO ; Ziye LI ; Mengting SUN ; Jiapeng TANG ; Tingting WANG ; Jiabi QIN
Journal of Central South University(Medical Sciences) 2025;50(3):469-481
OBJECTIVES:
The gut microbiota plays a crucial role in the pathophysiology of various types of diabetes. However, the causal relationship between them has yet to be systematically elucidated. This study aims to explore the potential causal associations between gut microbiota and diabetes using a two-sample Mendelian randomization (MR) analysis, based on multiple taxonomic levels.
METHODS:
Eligible instrumental variables were extracted from the selected genome-wide association study (GWAS) data on gut microbiota. These were combined with GWAS datasets on type 1 diabetes (T1D), type 2 diabetes (T2D), and gestational diabetes mellitus (GDM) to conduct forward MR analysis, sensitivity analysis, reverse MR analysis, and validation of significant estimates. Microbial taxa with causal effects on T1D, T2D, and GDM were identified based on a comprehensive assessment of all analytical stages.
RESULTS:
A total of 2 179, 2 176, and 2 166 single nucleotide polymorphisms (SNP) were included in the MR analyses for gut microbiota with T1D, T2D, and GDM, respectively. MR results indicated causal associations between: Six microbial taxa (Eggerthella, Lachnospira, Bacillales, Desulfovibrionales, Parasutterella, and Turicibacter) and T1D; 9 microbial taxa (Verrucomicrobia, Deltaproteobacteria, Actinomycetales, Desulfovibrionale, Actinomycetaceae, Desulfovibrionaceae, Actinomyces, Alcaligenaceae, and Lachnospiraceae NC2004 group) and T2D; 10 microbial taxa (Betaproteobacteria, Coprobacter, Ruminococcus2, Tenericutes, Clostridia, Methanobacteria, Mollicutes, Methanobacteriales, Methanobacteriaceae, and Methanobrevibacter) and GDM.
CONCLUSIONS
This study identified specific gut microbial taxa that may significantly increase or decrease the risk of developing diabetes. Some findings were fully replicated in independent validation datasets. However, the underlying biological mechanisms of these causal relationships warrant further investigation through mechanistic studies and population-based research.
Gastrointestinal Microbiome/genetics*
;
Humans
;
Mendelian Randomization Analysis
;
Genome-Wide Association Study
;
Diabetes Mellitus, Type 2/genetics*
;
Diabetes Mellitus, Type 1/genetics*
;
Female
;
Polymorphism, Single Nucleotide
;
Diabetes, Gestational/genetics*
;
Pregnancy
6.A case report and literature review of juvenile trabecular ossifying fibroma originating from the uncinate process.
Le SUN ; Tingting LUO ; Yunyun ZHANG ; Yanqiao WU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(8):766-770
This paper reported a case of juvenile trabecular ossifying fibroma(JTOF) originating from the uncinate process. The main clinical manifestation was nasal obstruction and epiphora. Contrast-enhanced sinus CT revealed an irregular heterogeneous soft tissue mass centered in the right uncinate process, with involvement of the right anterior ethmoid sinus, maxillary sinus ostium, frontal process of the maxilla, and partial nasolacrimal duct. The solid components of the tumor demonstrated enhancement on contrast imaging. The patient underwent endoscopic resection of the right sinonasal tumor under general anesthesia. Postoperative pathological examination confirmed the diagnosis of JTOF. No tumor recurrence was observed during the 3-month follow-up period.
Humans
;
Ethmoid Bone/pathology*
;
Fibroma, Ossifying
7.Integrated evidence chain-based effectiveness evaluation of traditional Chinese medicines (Eff-iEC): A demonstration study.
Ye LUO ; Xu ZHAO ; Ruilin WANG ; Xiaoyan ZHAN ; Tianyi ZHANG ; Tingting HE ; Jing JING ; Jianyu LI ; Fengyi LI ; Ping ZHANG ; Junling CAO ; Jinfa TANG ; Zhijie MA ; Tingming SHEN ; Shuanglin QIN ; Ming YANG ; Jun ZHAO ; Zhaofang BAI ; Jiabo WANG ; Aiguo DAI ; Xiangmei CHEN ; Xiaohe XIAO
Acta Pharmaceutica Sinica B 2025;15(2):909-918
Addressing the enduring challenge of evaluating traditional Chinese medicines (TCMs), the integrated evidence chain-based effectiveness evaluation of TCMs (Eff-iEC) has emerged. This paper explored its capacity through a demonstration study that evaluated the effectiveness evidence of six commonly used anti-hepatic fibrosis Chinese patent medicines (CPMs), including Biejiajian Pill (BP), Dahuang Zhechong Pill (DZP), Biejia Ruangan Compound (BRC), Fuzheng Huayu Capsule (FHC), Anluo Huaxian Pill (AHP), and Heluo Shugan Capsule (HSC), using both Eff-iEC and the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system. The recognition of these CPMs within the TCM academic community was also assessed through their inclusion in relevant medical documents. Results showed that the evidence of BRC and FHC received higher assessments in both Eff-iEC and GRADE system, while the assessments for others varied. Analysis of community recognition revealed that Eff-iEC more accurately reflects the clinical value of these CPMs, exhibiting superior evaluative capabilities. By breaking through the conventional pattern of TCMs effectiveness evaluation, Eff-iEC offers a novel epistemology that better aligns with the clinical realities and reasoning of TCMs, providing a coherent methodology for clinical decision-making, new drug evaluations, and health policy formulation.
8.Fibrinogen-tau Aggregates Exacerbate Tau Pathology and Memory Deficits in Alzheimer's Disease Model Mice.
Tingting WEN ; Lanxia MENG ; Han LIU ; Qian ZHANG ; Lijun DAI ; Liqin HUANG ; Liang DAN ; Kedong ZHU ; Jiaying LUO ; Zhaohui ZHANG
Neuroscience Bulletin 2025;41(7):1246-1260
Vascular damage plays a significant role in the onset and progression of Alzheimer's disease (AD). However, the precise molecular mechanisms underlying the induction of neuronal injury by vascular damage remain unclear. The present study aimed to examine the impact of fibrinogen (Fg) on tau pathology. The results showed that Fg deposits in the brains of tau P301S transgenic mice interact with tau, enhancing the cytotoxicity of pathological tau aggregates and promoting tau phosphorylation and aggregation. Notably, Fg-modified tau fibrils caused enhanced neuronal apoptosis and synaptic damage compared to unmodified fibrils. Furthermore, intrahippocampal injection of Fg-modified tau fibrils worsened the tau pathology, neuroinflammation, synaptic damage, neuronal apoptosis, and cognitive dysfunction in tau P301S mice compared to controls. The present study provides compelling evidence linking Fg and tau, thereby connecting cerebrovascular damage to tau pathology in AD. Consequently, inhibiting Fg-mediated tau pathology could potentially impede the progression of AD.
Animals
;
tau Proteins/metabolism*
;
Alzheimer Disease/metabolism*
;
Fibrinogen/metabolism*
;
Mice, Transgenic
;
Mice
;
Disease Models, Animal
;
Memory Disorders/metabolism*
;
Male
;
Mice, Inbred C57BL
;
Brain/metabolism*
;
Hippocampus/metabolism*
;
Protein Aggregation, Pathological/metabolism*
;
Apoptosis
;
Phosphorylation
9.Engineered Extracellular Vesicles Loaded with MiR-100-5p Antagonist Selectively Target the Lesioned Region to Promote Recovery from Brain Damage.
Yahong CHENG ; Chengcheng GAI ; Yijing ZHAO ; Tingting LI ; Yan SONG ; Qian LUO ; Danqing XIN ; Zige JIANG ; Wenqiang CHEN ; Dexiang LIU ; Zhen WANG
Neuroscience Bulletin 2025;41(6):1021-1040
Hypoxic-ischemic (HI) brain damage poses a high risk of death or lifelong disability, yet effective treatments remain elusive. Here, we demonstrated that miR-100-5p levels in the lesioned cortex increased after HI insult in neonatal mice. Knockdown of miR-100-5p expression in the brain attenuated brain injury and promoted functional recovery, through inhibiting the cleaved-caspase-3 level, microglia activation, and the release of proinflammation cytokines following HI injury. Engineered extracellular vesicles (EVs) containing neuron-targeting rabies virus glycoprotein (RVG) and miR-100-5p antagonists (RVG-EVs-Antagomir) selectively targeted brain lesions and reduced miR-100-5p levels after intranasal delivery. Both pre- and post-HI administration showed therapeutic benefits. Mechanistically, we identified protein phosphatase 3 catalytic subunit alpha (Ppp3ca) as a novel candidate target gene of miR-100-5p, inhibiting c-Fos expression and neuronal apoptosis following HI insult. In conclusion, our non-invasive method using engineered EVs to deliver miR-100-5p antagomirs to the brain significantly improves functional recovery after HI injury by targeting Ppp3ca to suppress neuronal apoptosis.
Animals
;
MicroRNAs/metabolism*
;
Extracellular Vesicles/metabolism*
;
Mice
;
Recovery of Function/physiology*
;
Hypoxia-Ischemia, Brain/therapy*
;
Mice, Inbred C57BL
;
Antagomirs/administration & dosage*
;
Male
;
Animals, Newborn
;
Apoptosis/drug effects*
;
Brain Injuries/metabolism*
;
Glycoproteins
;
Peptide Fragments
;
Viral Proteins
10.Construction and validation of a prognostic prediction model for pediatric sepsis based on the Phoenix sepsis score.
Yongtian LUO ; Hui SUN ; Zhigui JIANG ; Zhen YANG ; Chengxi LU ; Lufei RAO ; Tingting PAN ; Yuxin RAO ; Xiao LI ; Honglan YANG
Chinese Critical Care Medicine 2025;37(9):856-860
OBJECTIVE:
To construct and validate a prognostic prediction model for children with sepsis using the Phoenix sepsis score (PSS).
METHODS:
A retrospective case series study was conducted to collect clinical data of children with sepsis admitted to the pediatric intensive care unit (PICU) of the Affiliated Hospital of Guizhou Medical University from January 2022 to April 2024. The data included general information, the worst values of laboratory indicators within the first 24 hours of PICU admission, PSS score, pediatric critical illness score (PCIS), and the survival status of the children within 30 days of admission. The statistically significant indicators in univariate Logistic regression analysis were included in multivariate Logistic regression analysis to screen the risk factors affecting the prognosis of children with sepsis and construct a nomogram model. The receiver operator characteristic curve (ROC curve) was drawn to evaluate the predictive performance of the model. The Bootstrap method was used to perform 1 000 repeated sampling internal verification and draw the calibration curve of the model.
RESULTS:
A total of 199 children with sepsis were included, of which 32 died and 167 survived 30 days after admission. In the univariate Logistic regression analysis, shock, white blood cell count (WBC), international normalized ratio (INR), lactic acid (Lac), PSS score, and PCIS score were identified as statistically significant predictors. These variables were then included in the multivariate Logistic regression analysis, which demonstrated that shock [odds ratio (OR) = 4.258, 95% confidence interval (95%CI) was 1.049-17.288], WBC (OR = 1.124, 95%CI was 1.052-1.210), and PSS score (OR = 1.977, 95%CI was 1.298-3.012) were independent risk factors for mortality in pediatric patients with sepsis (all P < 0.05). A nomogram model was constructed based on these three risk factors, with the model equation as follows: -4.809+1.449×shock+0.682×PSS score+0.117×WBC. The calibration curve results showed that the model's predictions were highly consistent with the actual observations. The ROC curve showed that when the Youden index of the prediction model was 0.792, the sensitivity and specificity were 90.6% and 88.6%, respectively, and the area under the curve (AUC) was 0.957 (95%CI was 0.930-0.984), which was higher than the AUC of shock, WBC, and PSS score alone (0.808, 0.667, 0.908, respectively).
CONCLUSIONS
Shock, WBC, and PSS score have demonstrated certain predictive value for mortality in children with sepsis. The nomogram model based on the above indicators has important clinical significance for evaluating the prognosis and guiding treatment of children with sepsis.
Humans
;
Sepsis/diagnosis*
;
Prognosis
;
Retrospective Studies
;
Logistic Models
;
Intensive Care Units, Pediatric
;
Nomograms
;
Child
;
ROC Curve
;
Risk Factors
;
Male
;
Female
;
Child, Preschool
;
Infant


Result Analysis
Print
Save
E-mail