1.Needs for rehabilitation in China: Estimates based on the Global Burden of Disease Study 1990-2019.
Tian TIAN ; Lin ZHU ; Qingzhen FU ; Shiheng TAN ; Yukun CAO ; Ding ZHANG ; Mingxue WANG ; Ting ZHENG ; Lijing GAO ; Daria VOLONTOVICH ; Yongchen WANG ; Jinming ZHANG ; Zhimei JIANG ; Hongbin QIU ; Fan WANG ; Yashuang ZHAO
Chinese Medical Journal 2025;138(1):49-59
BACKGROUND:
As an essential part of health services, rehabilitation is of great significance to improve the health and quality of life of the whole population. Accelerating aging calls for a significant expansion of rehabilitation services in China, but rehabilitation needs remain unclear. We conducted the study to explore the rehabilitation needs in China and project the trend of rehabilitation needs from 2020 to 2034.
METHODS:
The data of health conditions that might potentially benefit from rehabilitation were obtained from Global Burden of Disease (GBD) study. Estimated annual percentage changes (EAPCs) were calculated to quantify the trends of the age-standardized rates. Projections of rehabilitation needs were made until 2034 using Bayesian age-period-cohort analysis (BAPC).
RESULTS:
Approximately 460 million persons (33.3% of the total population) need rehabilitation in China, contributing to 63 million years lived with disabilities (YLDs) in 2019. The number of prevalent cases that need rehabilitation increased from around 268 (95% uncertainty interval [UI]: 257-282) million in 1990 to almost 460 (95% UI: 443-479) million in 2019, representing an increase of 71.3%. The highest contribution to the need for rehabilitation was musculoskeletal disorders with about 322 (95% UI: 302-343) million persons in seven aggregate disease and injury categories, and hearing loss with over 95 (95% UI: 84-107) million people among 25 health conditions. Based on the projection results, there will be almost 636 million people (45% of the total population) needing rehabilitation services in China by 2034, representing an increase of 38.3%. The rehabilitation needs of neoplasms, cardiovascular diseases, and neurological disorders are expected to increase significantly from 2019 to 2034, with increases of 102.3%, 88.8% and 73.2%, respectively.
CONCLUSIONS
The need for rehabilitation in China substantially increased over the last 30 years. It is predicted that over two in five people will require rehabilitation by 2034, thus suggesting the need to develop rehabilitation services that meet individuals' rehabilitation needs.
Humans
;
China/epidemiology*
;
Global Burden of Disease
;
Female
;
Male
;
Musculoskeletal Diseases/epidemiology*
;
Rehabilitation/trends*
;
Quality of Life
;
Middle Aged
;
Aged
;
Bayes Theorem
2.c-Met-targeted chimeric antigen receptor T cells inhibit human serous ovarian cancer cell SKOV-3 in vitro.
Na-Na DU ; Yan-Jun ZHANG ; Yan-Qiu LI ; Lu ZHANG ; Ran AN ; Xiang-Cheng ZHEN ; Jing-Ting MIN ; Zheng-Hong LI
Acta Physiologica Sinica 2025;77(2):241-254
The study aimed to construct the second and third generation chimeric antigen receptor T cells (CAR-T) targeting the c-mesenchymal-epithelial transition factor (c-Met) protein, and observe their killing effect on human serous ovarian cancer cell SKOV-3. The expression of MET gene in ovarian serous cystadenocarcinoma, the correlation between MET gene expression and the abundance of immune cell infiltration, and the effect of MET gene expression on the tissue function of ovarian serous cystadenocarcinoma were analyzed by bioinformatics. The expression of c-Met in ovarian cancer tissues and adjacent tissues was detected by immunohistochemical staining. The second and third generation c-Met CAR-T cells, namely c-Met CAR-T(2G/3G), were prepared by lentivirus infection, and the cell subsets and infection efficiency were detected by flow cytometry. Using CD19 CAR-T and activated T cells as control groups and A2780 cells with c-Met negative expression as Non target groups, the kill efficiency on SKOV-3 cells with c-Met positive expression, cytokine release and cell proliferation of c-Met CAR-T(2G/3G) were explored by lactate dehydrogenase (LDH) release, ELISA and CCK-8 respectively. The results showed that MET gene expression was significantly up-regulated in ovarian cancer tissues compared with normal tissues, which was consistent with the immunohistochemistry results. However, in all pathological stages, there was no obvious difference in MET expression and no correlation between MET gene expression and the race and age of ovarian cancer patients. The second generation and third generation c-Met CAR-T cells were successfully constructed. After lentivirus infection, the proportion of CD8+ T cells in c-Met CAR-T(2G) was upregulated, while there was no significant change in the cell subsets of c-Met CAR-T(3G). The LDH release experiment showed that the kill efficiency of c-Met CAR-T(2G/3G) on SKOV-3 increased with the increase of effect-target ratio. When the effect-target ratio was 20:1, the kill efficiency of c-Met CAR-T(2G) reached (42.02 ± 5.17)% (P < 0.05), and the kill efficiency of c-Met CAR-T(3G) reached (51.40 ± 2.71)% (P < 0.05). ELISA results showed that c-Met CAR-T released more cytokine compared to CD19 CAR-T and activated T cells (P < 0.05). Moreover, the cytokine release of c-Met CAR-T(3G) was higher than c-Met CAR-T(2G) (P < 0.01). The CCK-8 results showed that after 48 h, the cell number of c-Met CAR-T(2G) was higher than that of c-Met CAR-T(3G) (P < 0.01). In conclusion, both the second and third generation c-Met CAR-T can target and kill c-Met-positive SKOV-3 cells, with no significant difference. c-Met CAR-T(2G) has stronger proliferative ability, and c-Met CAR-T(3G) releases more cytokines.
Humans
;
Female
;
Ovarian Neoplasms/immunology*
;
Proto-Oncogene Proteins c-met/metabolism*
;
Receptors, Chimeric Antigen/immunology*
;
Cell Line, Tumor
;
Cystadenocarcinoma, Serous/immunology*
;
T-Lymphocytes/immunology*
3.Mechanism of action of ginsenoside Rg_2 on diabetic retinopathy and angiogenesis based on YAP/TLRs pathway.
Zhuo-Rong LIU ; Yong-Li SONG ; Shang-Qiu NING ; Yue-Ying YUAN ; Yu-Ting ZHANG ; Gai-Mei HAO ; Jing HAN
China Journal of Chinese Materia Medica 2025;50(6):1659-1669
Ginsenoside Rg_2(GRg2) is a triterpenoid compound found in Panax notoginseng. This study explored its effects and mechanisms on diabetic retinopathy and angiogenesis. The study employed endothelial cell models induced by glucose or vascular endothelial growth factor(VEGF), the chorioallantoic membrane(CAM) model, the oxygen-induced retinopathy(OIR) mouse model, and the db/db mouse model to evaluate the therapeutic effects of GRg2 on diabetic retinopathy and angiogenesis. Transwell assays and endothelial tube formation experiments were conducted to assess cell migration and tube formation, while vascular area measurements were applied to detect angiogenesis. The impact of GRg2 on the retinal structure and function of db/db mice was evaluated through retinal thickness and electroretinogram(ERG) analyses. The study investigated the mechanisms of GRg2 by analyzing the activation of Yes-associated protein(YAP) and Toll-like receptors(TLRs) pathways. The results indicated that GRg2 significantly reduced cell migration numbers and tube formation lengths in vitro. In the CAM model, GRg2 exhibited a dose-dependent decrease in the vascular area ratio. In the OIR model, GRg2 notably decreased the avascular and neovascular areas, ameliorating retinal structural disarray. In the db/db mouse model, GRg2 increased the total retinal thickness and enhanced the amplitudes of the a-wave, b-wave, and oscillatory potentials(OPs) in the ERG, improving retinal structural disarray. Transcriptomic analysis revealed that the TLR signaling pathway was significantly down-regulated following YAP knockdown, with PCR results consistent with the transcriptome sequencing findings. Concurrently, GRg2 downregulated the expression of Toll-like receptor 4(TLR4), TNF receptor-associated factor 6(TRAF6), and nuclear factor-kappaB(NF-κB) proteins in high-glucose-induced endothelial cells. Collectively, GRg2 inhibits cell migration and tube formation and significantly reduces angiogenesis in CAM and OIR models, improving retinal structure and function in db/db mice, with its pharmacological mechanism likely involving the down-regulation of YAP expression.
Animals
;
Ginsenosides/pharmacology*
;
Diabetic Retinopathy/physiopathology*
;
Mice
;
YAP-Signaling Proteins
;
Humans
;
Male
;
Signal Transduction/drug effects*
;
Cell Movement/drug effects*
;
Adaptor Proteins, Signal Transducing/genetics*
;
Mice, Inbred C57BL
;
Neovascularization, Pathologic/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Panax notoginseng/chemistry*
;
Endothelial Cells/metabolism*
;
Transcription Factors/genetics*
;
Angiogenesis
4.Phenotypic Function of Legionella pneumophila Type I-F CRISPR-Cas.
Ting MO ; Hong Yu REN ; Xian Xian ZHANG ; Yun Wei LU ; Zhong Qiu TENG ; Xue ZHANG ; Lu Peng DAI ; Ling HOU ; Na ZHAO ; Jia HE ; Tian QIN
Biomedical and Environmental Sciences 2025;38(9):1105-1119
OBJECTIVE:
CRISPR-Cas protects bacteria from exogenous DNA invasion and is associated with bacterial biofilm formation and pathogenicity.
METHODS:
We analyzed the type I-F CRISPR-Cas system of Legionella pneumophila WX48, including Cas1, Cas2-Cas3, Csy1, Csy2, Csy3, and Cas6f, along with downstream CRISPR arrays. We explored the effects of the CRISPR-Cas system on the in vitro growth, biofilm-forming ability, and pathogenicity of L. pneumophila through constructing gene deletion mutants.
RESULTS:
The type I-F CRISPR-Cas system did not affect the in vitro growth of wild-type or mutant strains. The biofilm formation and intracellular proliferation of the mutant strains were weaker than those of the wild type owing to the regulation of type IV pili and Dot/Icm type IV secretion systems. In particular, Cas6f deletion strongly inhibited these processes.
CONCLUSION
The type I-F CRISPR-Cas system may reduce biofilm formation and intracellular proliferation in L. pneumophila.
Legionella pneumophila/pathogenicity*
;
CRISPR-Cas Systems
;
Biofilms/growth & development*
;
Phenotype
;
Bacterial Proteins/metabolism*
;
Gene Deletion
5.Research Progress in Copper Homeostasis and Diseases.
Shu-Ting QIU ; Xiao-Hua TAN ; Shi-Han SHAO ; Li YU ; Ying-Ying ZHANG ; Yue-Jia CAO ; Di CHUN-HONG
Acta Academiae Medicinae Sinicae 2025;47(1):102-109
As an indispensable trace element in the human body,copper plays an important role in various physiological and biochemical reactions.The dyshomeostasis of copper leads to the disorder of copper metabolism and the occurrence of related diseases.Cuproptosis,a newly proposed regulatory cell death mode,is different from the known apoptosis,pyroptosis,necroptosis,and ferroptosis.Recent studies have found that the dyshomeostasis of copper has been observed in a variety of cancers.Therefore,targeting copper for disease treatment may become a new strategy and a new idea.This article systematically summarizes the fundamental properties of copper,copper dyshomeostasis-related diseases (Menkes syndrome,Wilson's disease,and cancer) and their treatment,and reviews the research progress in cuproptosis.
Humans
;
Copper/metabolism*
;
Homeostasis
;
Neoplasms/metabolism*
;
Hepatolenticular Degeneration/metabolism*
;
Menkes Kinky Hair Syndrome/metabolism*
6.Effect of Folate Deficiency on the Changes of Histone H3 Lysine 4 Monomethylation-Marked Enhancers and Its Molecular Exploration in Low Folate-Induced Neural Tube Defects.
Qiu XIE ; Jin HU ; Jian-Ting LI ; Ting ZHANG
Acta Academiae Medicinae Sinicae 2025;47(5):782-791
Objective To investigate the effects of folate deficiency on changes in histone H3 lysine 4 (H3K4) mono-methylation (me1)-marked enhancers and the molecular mechanism underpinning the folate deficiency-induced neural tube defects (NTD). Methods Mouse embryonic stem cells (mESCs) were cultured in the folate-free DMEM medium (folate-deficient group) and the DMEM medium containing 4 mg/L folate (normal control group),respectively.Chromatin immunoprecipitation sequencing (ChIP-seq) was performed for H3K4me1. The mouse model of folate-induced NTD was established,and transcriptome sequencing (RNA-seq) was performed for the brain tissue of fetal mice to reveal the differential expression profiles.The results were validated through real-time quantitative polymerase chain reaction (RT-qPCR).The activity of the differential peak regions of H3K4me1 was verified through the luciferase reporter assay. Results The folate content in the mESCs cultured in the folate-free medium reduced compared with that in the normal control group (P=0.008).The H3K4me1-maked enhancers in the mESCs cultured in the folate-free medium induced significant changes in intronic regions,and these changes were concentrated in metabolic and energy metabolism processes (q=9.56×10-48,P=1.28×10-47).The differentially expressed genes harboring H3K4me1-marked enhancers in mESCs were mainly enriched in the Wnt signaling pathway (q=0.004,P=0.004 7).ChIP-qPCR results confirmed that H3K4me1 binding decreased in the differential peak regions of the Ldlrap1 gene (P=0.008),Camta1 gene (P=0.002),and Apc2 gene (P=0.012).The H3K4 demethylase inhibitor T-448 effectively reversed the H3K4me1 binding in the differential peak regions of the aforementioned genes (P=0.01).The results of RNA-seq for the brain tissue of NTD fetal mice showed significant enrichment of the differentially expressed genes in the Wnt signaling pathway (P=1.52×10-5).The enrichment of differential peak regions of H3K4me1-marked enhancers in Apc2,Ldlrap1,and Camta1 genes in the brain tissue also showed significant changes.The differential peak region in Apc2 exhibited transcription factor activity (P=0.020). Conclusion Folate deficiency may affect changes in H3K4me1-marked enhancers to participate in the regulation of neural tube closure genes,thereby inducing the occurrence of NTD.
Neural Tube Defects/genetics*
;
Animals
;
Mice
;
Folic Acid Deficiency/complications*
;
Histones/metabolism*
;
Folic Acid/metabolism*
;
Methylation
;
Mouse Embryonic Stem Cells/metabolism*
;
Wnt Signaling Pathway
;
Lysine/metabolism*
;
Chromatin Immunoprecipitation Sequencing
7.Correlation between Combined Urinary Metal Exposure and Grip Strength under Three Statistical Models: A Cross-sectional Study in Rural Guangxi
Jian Yu LIANG ; Hui Jia RONG ; Xiu Xue WANG ; Sheng Jian CAI ; Dong Li QIN ; Mei Qiu LIU ; Xu TANG ; Ting Xiao MO ; Fei Yan WEI ; Xia Yin LIN ; Xiang Shen HUANG ; Yu Ting LUO ; Yu Ruo GOU ; Jing Jie CAO ; Wu Chu HUANG ; Fu Yu LU ; Jian QIN ; Yong Zhi ZHANG
Biomedical and Environmental Sciences 2024;37(1):3-18
Objective This study aimed to investigate the potential relationship between urinary metals copper (Cu), arsenic (As), strontium (Sr), barium (Ba), iron (Fe), lead (Pb) and manganese (Mn) and grip strength. Methods We used linear regression models, quantile g-computation and Bayesian kernel machine regression (BKMR) to assess the relationship between metals and grip strength.Results In the multimetal linear regression, Cu (β=-2.119), As (β=-1.318), Sr (β=-2.480), Ba (β=0.781), Fe (β= 1.130) and Mn (β=-0.404) were significantly correlated with grip strength (P < 0.05). The results of the quantile g-computation showed that the risk of occurrence of grip strength reduction was -1.007 (95% confidence interval:-1.362, -0.652; P < 0.001) when each quartile of the mixture of the seven metals was increased. Bayesian kernel function regression model analysis showed that mixtures of the seven metals had a negative overall effect on grip strength, with Cu, As and Sr being negatively associated with grip strength levels. In the total population, potential interactions were observed between As and Mn and between Cu and Mn (Pinteractions of 0.003 and 0.018, respectively).Conclusion In summary, this study suggests that combined exposure to metal mixtures is negatively associated with grip strength. Cu, Sr and As were negatively correlated with grip strength levels, and there were potential interactions between As and Mn and between Cu and Mn.
8.Establishment and validation of bioactivity measurement method for recombinant human midkine
Ying ZHANG ; Ting HE ; Ming-feng QIU ; Sheng-bin PENG
Acta Pharmaceutica Sinica 2024;59(1):198-201
To establish and optimize a method for the detection of recombinant human midkine (rhMK) activity and verify its methodology, cell counting kit-8 (cck-8) method was used to measure the proliferation activity of rat knee chondrocytes. The specificity, accuracy, precision, linearity and robustness of the method were also verified in this study. The established method was proven to have good specificity because the buffer of rhMK and recombinant human interleukin-1 receptor antagonist have no obvious active effect; the recoveries of the samples with relative activities of 50%, 75%, 100%, 125%, 150% were in the range of 80.0% to 124.0% by statistical analysis, the relative standard deviations (RSD) of relative potency were all within 20%, the linear correlation coefficient,
9.Application of 9-gene panel in assisting fine needle aspiration cytology to diagnose thyroid cancer
Yanqi ZHANG ; Huan ZHAO ; Linlin ZHAO ; Yue SUN ; Cong WANG ; Zhihui ZHANG ; Tian QIU ; Xin YANG ; Ting XIAO ; Huiqin GUO
Chinese Journal of Oncology 2024;46(11):1049-1057
Objective:To evaluate the utility of the 9-gene panel as a differential diagnostic method for thyroid nodules within determinate cytological diagnosis and as a parallel diagnostic method for thyroid fine-needle aspiration (FNA) cytology.Methods:579 liquid-based cytology samples from 544 patients were collected after thyroid FNA diagnosis in our hospital from December 2014 to April 2021. Mutations at any site of 9 genes, namely, BRAF, NRAS, HRAS, KRAS, GNAS, RET, TERT, TP53, and PIK3CA as recorded by the Catalogue of Somatic Mutations in Cancer (COSMIC), were analyzed by next-generation sequencing. Taking postoperative histopathology and cytology results with definite benign or malignant diagnosis as the gold standard, the diagnostic efficacy of the 9-gene panel as a reclassified method for thyroid nodules with indeterminate cytological diagnosis and as a parallel diagnostic method for thyroid FNA cytology were evaluated and compared with that of the BRAF V600E single-gene detection method.Results:Of the 579 thyroid nodules, 196 (33.85%) were Bethesda Ⅱ, 11 (1.90%) were Bethesda Ⅲ, 31 (5.35%) were Bethesda Ⅳ, 27 (4.66%) were Bethesda Ⅴ, and 314 (54.23%) were Bethesda Ⅵ, as diagnosed by thyroid FNA cytology. Among these 579 thyroid nodules, 275 were tested positive for 9-gene mutations, with a mutation rate of 47.5%. Of the 329 thyroid nodules surgically removed, 30 (9.12%) were benign, 5 (1.52%) were borderline, and 294 (89.36%) were malignant. Regarding borderline nodules as malignant nodules, the mutation rates of the 9 genes in the 299 malignant thyroid nodules from high to low were BRAF 62.21% (186/299), NRAS 5.02% (15/299), HRAS 1.00% (3/299), PIK3CA 0.67% (2/299), GNAS 0.67% (2/299), KRAS 0.33% (1/299), TP53 0.33% (1/299), TERT 0.33% (1/299) and RET 0.00% (0/299). The malignant risks of the 9 genes from high to low were BRAF 100% (186/186), PIK3CA 100.00% (2/2), GNAS 100.00% (2/2), TERT 100.00% (1/1), TP53 100.00% (1/1), NRAS 78.95% (15/19), HRAS 75.00% (3/4), and KRAS 50.00% (1/2). For thyroid nodules of Bethesda Ⅲ-Ⅳ (indeterminate diagnosis), the sensitivity (SN) of the 9-gene panel in diagnosing thyroid cancer is 34.48% (10/29), the specificity (SP) is 61.54% (8/13), and the accuracy is 42.86% (18/42); whereas the SN of the BRAF V600E detection method is 0%. Therefore, the diagnostic efficiency of the 9-gene panel is significantly better than that of BRAF V600E single gene detection. For thyroid nodules of Bethesda Ⅱ-Ⅵ, the SN of the 9-gene panel in diagnosing thyroid cancer was 68.83% (254/369), the SP was 90.00% (189/210), the accuracy was 76.51% (443/579), and the area under the curve (AUC) was 0.79; whereas the SN of BRAF V600E single-gene detection in diagnosing thyroid cancer was 63.69% (235/369), the SP was 99.52% (209/210), the accuracy was 76.68% (444/579), and the AUC was 0.82. The SP of BRAF V600E detection is higher than that of the 9-gene panel ( P<0.01), but there is no significant difference in SN, accuracy (both P>0.05), and AUC ( Z=0.85, P=0.396) between them. Gene mutations indicating poor prognosis were detected in 4 nodules of papillary thyroid carcinoma and 1 nodules of follicular thyroid carcinoma, including 2 nodules with TERT and BRAF V600E co-mutations, 1 nodule with TP53 mutation, and 2 nodules with PIK3CA mutation. Conclusions:As a reclassified method for thyroid lesions with indeterminate cytological diagnosis, the 9-gene panel is better than BRAF V600E single gene detection. As a parallel diagnostic method of thyroid FNA cytology, the 9-gene panel has similar diagnostic efficacy as BRAF V600E single-gene detection. The 9-gene panel can detect individual cases with gene mutations indicating poor prognosis. The identification of patients with these special gene mutations has certain implications for the clinical management of them.
10.Clinical characteristics and genetic analysis of six children with carnitine palmitoyltransferase 2 deficiency
Yan ZHANG ; Wenjuan QIU ; Huiwen ZHANG ; Ting CHEN ; Feng XU ; Xuefan GU ; Lianshu HAN
Journal of Zhejiang University. Medical sciences 2024;53(2):207-212
Objective:To investigate the clinical characteristic and genetic variants of children with carnitine palmitoyltransferase 2(CPT2)deficiency.Methods:The clinical and genetic data of 6 children with CPT2 deficiency were retrospectively analyzed.The blood acylcarnitines and genetic variants were detected with tandem mass spectrometry and whole-exon gene sequencing,respectively.Results:There were 4 males and 2 females with a mean age of 32 months(15 d-9 years)at diagnosis.One case was asymptomatic and with normal laboratory test results,2 had delayed onset,and 3 were of infantile type.Three cases were diagnosed at neonatal screening,and 3 cases presented with clinical manifestations of fever,muscle weakness,and increased muscle enzymes.Five children presented with decreased free carnitine and elevated levels of palmitoyl and octadecenoyl carnitines.CPT2 gene variants were detected at 8 loci in 6 children(4 harboring biallelic mutations and 2 harboring single locus mutations),including 3 known variants(p.R631C,p.T589M,and p.D255G)and 5 newly reported variants(p.F352L,p.R498L,p.F434S,p.A515P,and c.153-2A>G).It was predicted by PolyPhen2 and SIFT software that c.153-2A>G and p.F352L were suspected pathogenic variants,while p.R498L,p.F434S and p.A515P were variants of unknown clinical significance.Conclusions:The clinical phenotypes of CPT2 deficiency are diverse.An early diagnosis can be facilitated by neonatal blood tandem mass spectrometry screening and genetic testing,and most patients have good prognosis after a timely diagnosis and treatment.

Result Analysis
Print
Save
E-mail