1.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
2.Comparative Efficacy of Amiodarone and Lidocaine in Patients with Cardiac Arrest: A Systematic Review and Meta-analysis
Zhimao LI ; Dandi WANG ; Ting ZHANG ; Qimin MEI ; Yecheng LIU ; Huadong ZHU
Medical Journal of Peking Union Medical College Hospital 2025;16(2):406-415
To investigate the efficacy of amiodarone and lidocaine in cardiac arrest patients. We searched the PubMed, Embase, Cochrane Library, and Web of Science databases through to January 1, 2024. All studies comparing lidocaine, amiodarone, and placebo for cardiac arrest were included. Meta-analysis was performed, and the primary outcome was survival to hospital discharge. Secondary outcomes was survival to 24 h or hospital admission. Three RCTs and seven non-randomized intervention studies were included. Compared with placebo, amiodarone can improve the likelihood of survival to 24 h/hospital admission ( Limited RCTs directly compared amiodarone and lidocaine. No significant difference was found between amiodarone and lidocaine in improving 24 h/admission survival rate in RCTs. While compared to amiodarone and placebo, lidocaine can improve 24 h/admission survival rate and discharge survival rate in non-randomized intervention studies.
3.Research progress of sustained-release drug delivery system for uveitis
Ting ZHU ; Dahua XU ; Xiaolin WANG ; Mei CHEN
International Eye Science 2024;24(2):236-240
Uveitis, a complex ocular disorder with numerous etiologies, can result from infection, autoimmune, and various physicochemical and mechanical injury factors. The treatment of this disease is difficult, and failure to receive timely and effective treatment can often lead to blindness. With the deepening of people's understanding of uveitis and its related mechanisms, various new sustained-release drug delivery systems for uveitis have been studied. However, due to the existence of various anatomical and physiological barriers in the eye, there are multiple obstacles to the sustained release treatment of uveitis. In this paper, the main research results in this field in recent years are reviewed, and the innovations and limitations of various new sustained-release drug delivery systems are discussed in order to provide new ideas for the sustained-release drug delivery treatment of uveitis in the future. These new sustained-release drug delivery systems will help to completely change the traditional treatment mode of uveitis with side effects and poor compliance in the future, bringing longer targeted sustained release and less toxic reactions.
4.Inflammatory and Immunomodulatory Effects of Tripterygium wilfordii Multiglycoside in Mouse Models of Psoriasis Keratinocytes.
Shuo ZHANG ; Hong-Jin LI ; Chun-Mei YANG ; Liu LIU ; Xiao-Ying SUN ; Jiao WANG ; Si-Ting CHEN ; Yi LU ; Man-Qi HU ; Ge YAN ; Ya-Qiong ZHOU ; Xiao MIAO ; Xin LI ; Bin LI
Chinese journal of integrative medicine 2024;30(3):222-229
OBJECTIVE:
To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective.
METHODS:
Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction.
RESULTS:
TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01).
CONCLUSIONS
TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.
Male
;
Animals
;
Mice
;
Tripterygium
;
Psoriasis/drug therapy*
;
Keratinocytes
;
Skin Diseases/metabolism*
;
Cytokines/metabolism*
;
Imiquimod/metabolism*
;
Dermatitis/pathology*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Skin/metabolism*
5.Mechanism of Guilingji to prevent the mild cognitive impairment in rats based on kidney metabonomics
Jing-chao SHI ; Yu-kun WANG ; Shu-ting YU ; Ai-rong ZHANG ; Xiao-xia GAO ; Xue-mei QIN
Acta Pharmaceutica Sinica 2024;59(4):1017-1027
This study used kidney metabolomics to investigate the underlying mechanisms of Guilingji (GLJ) on mild cognitive impairment (MCI) rats. The rats were randomly divided into 6 groups (
6.Identification and anti-inflammatory activity of chemical constituents and a pair of new monoterpenoid enantiomers from the fruits of Litsea cubeba
Mei-lin LU ; Wan-feng HUANG ; Yu-ming HE ; Bao-lin WANG ; Fu-hong YUAN ; Ting ZHANG ; Qi-ming PAN ; Xin-ya XU ; Jia HE ; Shan HAN ; Qin-qin WANG ; Shi-lin YANG ; Hong-wei GAO
Acta Pharmaceutica Sinica 2024;59(5):1348-1356
Eighteen compounds were isolated from the methanol extract of the fruits of
7.A new hexacyclic triterpenoid with 13α ,27-cyclopropane ring from Glechoma longituba
Qian ZHANG ; Mei-long LU ; Tian-zi LIU ; Yue-ting ZHANG ; Ao ZHU ; Li-li DING ; Zhu-zhen HAN ; Li-hua GU ; Zheng-tao WANG
Acta Pharmaceutica Sinica 2024;59(5):1334-1340
In order to study the compounds from
8.Visualization Analysis of Artificial Intelligence Literature in Forensic Research
Yi-Ming DONG ; Chun-Mei ZHAO ; Nian-Nian CHEN ; Li LUO ; Zhan-Peng LI ; Li-Kai WANG ; Xiao-Qian LI ; Ting-Gan REN ; Cai-Rong GAO ; Xiang-Jie GUO
Journal of Forensic Medicine 2024;40(1):1-14
Objective To analyze the literature on artificial intelligence in forensic research from 2012 to 2022 in the Web of Science Core Collection Database,to explore research hotspots and developmen-tal trends.Methods A total of 736 articles on artificial intelligence in forensic medicine in the Web of Science Core Collection Database from 2012 to 2022 were visualized and analyzed through the litera-ture measuring tool CiteSpace.The authors,institution,country(region),title,journal,keywords,cited references and other information of relevant literatures were analyzed.Results A total of 736 articles published in 220 journals by 355 authors from 289 institutions in 69 countries(regions)were identi-fied,with the number of articles published showing an increasing trend year by year.Among them,the United States had the highest number of publications and China ranked the second.Academy of Forensic Science had the highest number of publications among the institutions.Forensic Science Inter-national,Journal of Forensic Sciences,International Journal of Legal Medicine ranked high in publica-tion and citation frequency.Through the analysis of keywords,it was found that the research hotspots of artificial intelligence in the forensic field mainly focused on the use of artificial intelligence technol-ogy for sex and age estimation,cause of death analysis,postmortem interval estimation,individual identification and so on.Conclusion It is necessary to pay attention to international and institutional cooperation and to strengthen the cross-disciplinary research.Exploring the combination of advanced ar-tificial intelligence technologies with forensic research will be a hotspot and direction for future re-search.
9.Ku70 Functions as an RNA Helicase to Regulate miR-124 Maturation and Neuronal Cell Differentiation
Ai-Xue HUANG ; Rui-Ting LI ; Yue-Chao ZHAO ; Jie LI ; Hui LI ; Xue-Feng DING ; Lin WANG ; Can XIAO ; Xue-Mei LIU ; Cheng-Feng QIN ; Ning-Sheng SHAO
Progress in Biochemistry and Biophysics 2024;51(6):1418-1433
ObjectiveHuman Ku70 protein mainly involves the non-homologous end joining (NHEJ) repair of double-stranded DNA breaks (DSB) through its DNA-binding properties, and it is recently reported having an RNA-binding ability. This paper is to explore whether Ku70 has RNA helicase activity and affects miRNA maturation. MethodsRNAs bound to Ku protein were analyzed by RNA immunoprecipitation sequencing (RIP-seq) and bioinfomatic anaylsis. The expression relationship between Ku protein and miRNAs was verified by Western blot (WB) and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assays. Binding ability of Ku protein to the RNAs was tested by biolayer interferometry (BLI) assay. RNA helicase activity of Ku protein was identified with EMSA assay. The effect of Ku70 regulated miR-124 on neuronal differentiation was performed by morphology analysis, WB and immunofluorescence assays with or without Zika virus (ZIKV) infection. ResultsWe revealed that the Ku70 protein had RNA helicase activity and affected miRNA maturation. Deficiency of Ku70 led to the up-regulation of a large number of mature miRNAs, especially neuronal specific miRNAs like miR-124. The knockdown of Ku70 promoted neuronal differentiation in human neural progenitor cells (hNPCs) and SH-SY5Y cells by boosting miR-124 maturation. Importantly, ZIKV infection reduced the expression of Ku70 whereas increased expression of miR-124 in hNPCs, and led to morphologically neuronal differentiation. ConclusionOur study revealed a novel function of Ku70 as an RNA helicase and regulating miRNA maturation. The reduced expression of Ku70 with ZIKV infection increased the expression of miR-124 and led to the premature differentiation of embryonic neural progenitor cells, which might be one of the causes of microcephaly.
10.Research progress of traditional Chinese medicine monomer and compound intervention on the Wnt signaling pathway in regulating bone metabolism
Ting LI ; Xiaoqiong ZHANG ; Mei LIU ; Qin WANG
China Pharmacy 2024;35(5):623-628
Bone metabolism refers to the decomposition and anabolism occurring during bone remodeling, and its balance is regulated by bone resorption and bone formation. A slight deviation of this balance causes various skeletal diseases, such as osteoporosis and renal osteodystrophy. Traditional Chinese medicine (TCM) monomers and compounds have certain advantages in treating bone metabolism diseases. The Wnt signaling pathway includes the canonical Wnt signaling pathway, dependent on β-catenin, and the non-canonical Wnt signaling pathway, independent of β-catenin. Both types of pathways can maintain bone metabolism balance by regulating bone formation and bone resorption and are essential for bone development, bone mass maintenance, and bone remodeling. A variety of TCM monomers (albiflorin, catalpol and icariin) and formulas (Zuogui pill, Yishen gugu prescription, Duzhong jiangu prescription, etc.) have been confirmed to promote differentiation of bone marrow mesenchymal stem cells, proliferation and differentiation of osteoblasts, bone injury repair, and osteoporosis improvement by activating the Wnt signaling pathway in recent years. Here, this article summarizes the research progress in the Wnt signaling pathway regulation of bone metabolism by TCM monomers and compounds to provide ideas for the clinical application of TCM and the research and development of new drugs for the prevention and treatment of bone metabolism diseases.

Result Analysis
Print
Save
E-mail