1.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
6.Optimization of purification process and component analysis of alkaloids from Zanthoxylum bungeanum Maxim
Heying YANG ; Caiping LUO ; Ting PENG ; Wenyi LIANG ; Songzhang SHEN ; Juan SU
Journal of Pharmaceutical Practice and Service 2025;43(2):75-81
Objective To optimize the process conditions and analyze the components of alkaloids from Zanthoxylum bungeanum Maxim(Z. bungeanum)using macroporous resin. Methods Combining single factor tests and orthogonal tests, the content of hydroxy-α-sanshool(HAS)and hydroxy-β-sanshool(HBS)were considered as indexes to determine the best process parameters. Ultra-performance liquid chromatography-quadrupole tandem time-of-flight mass spectrometry(UPLC-Q-TOF-MSE)was used to identify the structures of alkaloids. Results The optimal conditions were Mitsubishi HP-20 macroporous resin, the loading solution concentration was 0.2 g crude drug/ml, the ratio of crude drug to resin volume was 1 g∶2.5 ml, the diameter/height ratio of resin column was 1∶7, the dynamic adsorption flow rate was 4 times of bed volume(BV)per hour, and the adsorption time was 1 h. Impurities were removed by using 2 BV of 20% ethanol, 5 BV of 80% ethanol was used to elution, and the content of HAS and HBS was 4.71% and 1.02%, respectively. A total of 20 alkaloids were identified from Z. bungeanum. Conclusion This method was stable and feasible, obtaining high purity and various kinds of alkaloids, which could be used for the enrichment and purification of alkaloids from Z. bungeanum.
9.Analysis of the burden and trends of oral disorders among the elderly in China from 1990 to 2021
LI Zhixiao ; LOU Ting ; BAI Xiaoling ; CHEN Su ; GUO Shihong ; YANG Zengzhen ; XIAO Changliang
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(11):954-967
Objective:
To analyze the disease burden and trends of oral diseases among China’s elderly population (1990-2021) and provide evidence for developing targeted intervention strategies
Methods :
Using data from the Global Burden of Disease (GBD) 2021 study, we extracted prevalence, incidence, and disability-adjusted life years (DALYs) for oral conditions (permanent dental caries, edentulism, periodontal diseases, and other oral disorders) in individuals aged ≥60 years in China. Due to data limitations, other oral diseases only included DALYs and prevalence. Age-standardized rates (ASR)—including age-standardized prevalence rate (ASPR), age-standardized incidence rate (ASIR), and age-standardized DALYs rate (ASDR)--were calculated. Trends were assessed via Joinpoint regression using average annual percentage change (AAPC), stratified by sex and age groups (60-64, 65-69, 70-74, 75-79, 80-84, 85-89, 90-94, 95+ years).
Results:
From 1990 to 2021, China’s elderly population exhibited distinct trends in oral disease burden. Overall oral diseases showed declining ASDR and ASPR, yet ASIR slightly increased. Permanent dental caries demonstrated significant rises across ASDR, ASIR, and ASPR. Edentulism showed declining ASDR and ASPR alongside stable ASIR. 95+ age group saw rising rates. Periodontal diseases remained largely stable in ASDR and ASPR but experienced a slight ASIR decline. Other oral disorders showed mild ASDR decline and stable ASPR. Notably, sex and age disparities persisted. Women consistently bore higher burdens for overall oral diseases, caries, edentulism, and other oral diseases but lower periodontal disease rates compared to men. 85-89, 90-95, 95+ age group faced rising DALYs and prevalence for overall oral diseases, while all other age groups demonstrated declining trends in both DALYs and prevalence; for permanent caries, the 60-64 age group showed the largest increases in DALY rate, incidence, and prevalence; edentulism demonstrated the most pronounced and sustained rises in DALY rate and prevalence in the 95+ group, while declining most rapidly in the 60-64 age group; for periodontal disease, both DALY rates and prevalence declined in the 90-94 and 95+ age groups, but increased across all measures (DALY rate, incidence, and prevalence) in the 70-74 and 75-79 age group; other oral conditions exhibited relatively stable burden distributions or minor changes, with no significant age-specific shifting trends observed.
Conclusion
From 1990 to 2021, China’s elderly oral disease burden declined overall, but caries surged, edentulism improved, periodontal diseases stabilized, and other oral diseases slightly declined. Prioritizing older women and the adults aged 85+ is critical to addressing evolving oral health needs.
10.Occupational health literacy among key populations in the tertiary industry in Lu'an City
LIU Lei ; CHENG Tingting ; QIAN Chunsheng ; HUANG Rui ; LI Ting ; TANG Kun ; WEI Dong ; SU Yiwen ; LI Haowei ; LI Pengfei
Journal of Preventive Medicine 2025;37(11):1179-1183
Objective:
To analyze the occupational health literacy (OHL) level and its influencing factors among key populations in the tertiary industry in Lu'an City, Anhui Province, so as to provide a basis for developing targeted health interventions and improving regional occupational health policies.
Methods:
A stratified cluster random sampling method was employed to select five categories of key populations from the tertiary industry in Lu'an City as study subjects from August to September 2024. Data on gender, age, education level, and OHL were collected through the National OHL Monitoring Questionnaire for Key Populations. The OHL levels were analyzed, and influencing factors of OHL levels among key populations were analyzed using a multivariable logistic regression model.
Results:
A total of 1 243 individuals were surveyed, comprising 700 (56.32%) males and 543 (43.68%) females. The median age was 42.00 (interquartile range, 17.00) years. There were 609 individuals with OHL, and the OHL level was 48.99%. The OHL levels in fundamental knowledge of occupational health protection, healthy work styles and behaviors, knowledge of occupational health laws, and basic skills for occupational health protection were 84.71%, 60.34%, 43.93%, and 37.09%, respectively. Multivariable logistic regression analysis showed that educational level (primary school and below, OR=0.149, 95%CI: 0.064-0.344; junior high school, OR=0.340, 95%CI: 0.184-0.629; high school, OR=0.408, 95%CI: 0.230-0.723), average monthly personal income (3 000-<5 000 yuan, OR=1.655, 95%CI: 1.092-2.508; 5 000-<7 000 yuan, OR=2.195, 95%CI: 1.302-3.699; ≥7 000 yuan, OR=2.062, 95%CI: 1.016-4.183), employer nature (private enterprises, OR=2.992, 95%CI: 1.569-5.443), and industry category (education, OR=3.423, 95%CI: 1.407-8.327; courier / food delivery services, OR=0.459, 95%CI: 0.268-0.787; healthcare, OR=7.539, 95%CI: 3.255-17.461) were statistically associated with the OHL level among key population.
Conclusion
The OHL level among key population in the tertiary industry of Lu'an City can be further enhanced, with educational level, average monthly personal income, employer nature, and industry category identified as the primary influencing factors.


Result Analysis
Print
Save
E-mail