1.Pathogenesis and Syndrome Differentiation Treatment of Heart Failure Based on "Spleen-mitochondria" and Theory of "Dampness, Turbidity, Phlegm, and Fluid-related Diseases"
Rui ZHANG ; Fuyun JIA ; Jingshun YAN ; Xuan LIU ; Yadong WANG ; Yinan MA ; Yan LIU ; Qiang XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):265-274
Guided by Academician Zhang Boli's theory of "dampness, turbidity, phlegm, and fluid-related diseases",this paper elaborated on the pathogenesis and syndrome differentiation treatment of heart failure from the perspective of the "spleen-mitochondria". It analyzed the essential similarities between "spleen-mitochondria" and "dampness, turbidity, phlegm, and fluid-related diseases", as well as their close association with the onset of heart failure. Furthermore,it explored the connection between spleen function and mitochondrial function in traditional Chinese medicine (TCM),positing that the spleen's role in transportation and transformation is analogous to mitochondrial material metabolism and energy conversion,with spleen deficiency closely related to mitochondrial dysfunction. It thus concluded that mitochondrial material metabolism and energy conversion represent the microscopic essence of the spleen's role in transportation and transformation,and mitochondrial dysfunction is a contributing factor to pathological products like dampness and turbid phlegm,which are closely associated with the occurrence of heart failure. The four elements of dampness,turbidity,phlegm,and fluid are a series of related symptoms resulting from abnormal fluid transportation and transformation,serving as both factors in the onset of heart failure and the core pathological basis for its deterioration. Therefore,during the treatment of heart failure,it is essential to regulate mitochondrial function. Early intervention should focus on eliminating dampness and turbidity to improve mitochondrial function and restore normal energy metabolism. In the middle and late stages,emphasis should be placed on resolving phlegm,promoting blood circulation,warming Yang,and reducing water retention to alleviate mitochondrial damage and improve cardiac function. Supporting Qi and strengthening the spleen should be a continuous approach,and treatment should be adjusted to enhance mitochondrial function and stabilize the condition,thereby improving prognosis. This paper discussed the role of the spleen and mitochondria in the pathogenesis of heart failure,examined the evolution of heart failure mechanisms from the perspective of dampness, turbidity, phlegm, and fluid-related diseases,and proposed a phased treatment strategy. It enriched the theory of dampness, turbidity, phlegm, and fluid-related diseases and offered new strategies for heart failure treatment. However,in practical application,TCM strategies for treating heart failure need to be integrated with modern medical approaches to provide a more solid scientific foundation for treatment.
2.Applications of EEG Biomarkers in The Assessment of Disorders of Consciousness
Zhong-Peng WANG ; Jia LIU ; Long CHEN ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(4):899-914
Disorders of consciousness (DOC) are pathological conditions characterized by severely suppressed brain function and the persistent interruption or loss of consciousness. Accurate diagnosis and evaluation of DOC are prerequisites for precise treatment. Traditional assessment methods are primarily based on behavioral scales, which are inherently subjective and rely on observable behaviors. Moreover, traditional methods have a high misdiagnosis rate, particularly in distinguishing minimally conscious state (MCS) from vegetative state/unresponsive wakefulness syndrome (VS/UWS). This diagnostic uncertainty has driven the exploration of objective, reliable, and efficient assessment tools. Among these tools, electroencephalography (EEG) has garnered significant attention for its non-invasive nature, portability, and ability to capture real-time neurodynamics. This paper systematically reviews the application of EEG biomarkers in DOC assessment. These biomarkers are categorized into 3 main types: resting-state EEG features, task-related EEG features, and features derived from transcranial magnetic stimulation-EEG (TMS-EEG). Resting-state EEG biomarkers include features based on spectrum, microstates, nonlinear dynamics, and brain network metrics. These biomarkers provide baseline representations of brain activity in DOC patients. Studies have shown their ability to distinguish different levels of consciousness and predict clinical outcomes. However, because they are not task-specific, they are challenging to directly associate with specific brain functions or cognitive processes. Strengthening the correlation between resting-state EEG features and consciousness-related networks could offer more direct evidence for the pathophysiological mechanisms of DOC. Task-related EEG features include event-related potentials, event-related spectral modulations, and phase-related features. These features reveal the brain’s responses to external stimuli and provide dynamic information about residual cognitive functions, reflecting neurophysiological changes associated with specific cognitive, sensory, or behavioral tasks. Although these biomarkers demonstrate substantial value, their effectiveness rely on patient cooperation and task design. Developing experimental paradigms that are more effective at eliciting specific EEG features or creating composite paradigms capable of simultaneously inducing multiple features may more effectively capture the brain activity characteristics of DOC patients, thereby supporting clinical applications. TMS-EEG is a technique for probing the neurodynamics within thalamocortical networks without involving sensory, motor, or cognitive functions. Parameters such as the perturbational complexity index (PCI) have been proposed as reliable indicators of consciousness, providing objective quantification of cortical dynamics. However, despite its high sensitivity and objectivity compared to traditional EEG methods, TMS-EEG is constrained by physiological artifacts, operational complexity, and variability in stimulation parameters and targets across individuals. Future research should aim to standardize experimental protocols, optimize stimulation parameters, and develop automated analysis techniques to improve the feasibility of TMS-EEG in clinical applications. Our analysis suggests that no single EEG biomarker currently achieves an ideal balance between accuracy, robustness, and generalizability. Progress is constrained by inconsistencies in analysis methods, parameter settings, and experimental conditions. Additionally, the heterogeneity of DOC etiologies and dynamic changes in brain function add to the complexity of assessment. Future research should focus on the standardization of EEG biomarker research, integrating features from resting-state, task-related, and TMS-EEG paradigms to construct multimodal diagnostic models that enhance evaluation efficiency and accuracy. Multimodal data integration (e.g., combining EEG with functional near-infrared spectroscopy) and advancements in source localization algorithms can further improve the spatial precision of biomarkers. Leveraging machine learning and artificial intelligence technologies to develop intelligent diagnostic tools will accelerate the clinical adoption of EEG biomarkers in DOC diagnosis and prognosis, allowing for more precise evaluations of consciousness states and personalized treatment strategies.
3.Research progress on the improvement of myocardial fibrosis by traditional Chinese medicine through regulation of NLRP3 inflammasome
Rui ZHANG ; Jingshun YAN ; Fuyun JIA ; Kexin JIA ; Chenyang LIU ; Yan LIU ; Ye LI ; Qiang XU
China Pharmacy 2025;36(8):1008-1012
Myocardial fibrosis (MF), characterized by decreased cardiac function and myocardial compliance, is a pathological process and a progression factor in various cardiovascular diseases. The nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (NLRP3) inflammasome is closely related to the development of MF. Recent studies have shown that traditional Chinese medicine (TCM) can regulate the NLRP3 inflammasome to alleviate MF. Based on this, this article systematically summarizes the research progress on the mechanisms by which TCM regulates the NLRP3 inflammasome to improve MF. It is found that active ingredients of TCM, such as alkaloids (lycorine,vincristine,bufalin), saponins (astragaloside Ⅳ, diosgenin,ginsenoside Rg3), terpenoids (celastrol,oridonin), and phenols (polydatin,curcumin,phloridzin) as well as TCM formulas (Zhachong shisanwei pills,Zhilong huoxue tongyu capsules, Luqi formula) can inhibit the activation of the NLRP3 inflammasome, thereby suppressing the release of inflammatory factors such as interleukin-1β and IL-18, reducing inflammatory damage to myocardial tissue, alleviating excessive deposition of the extracellular matrix, and thus exerting the effect of improving MF.
4.Construction and Validation of a Large Language Model-Based Intelligent Pre-Consultation System for Traditional Chinese Medicine
Yiqing LIU ; Ying LI ; Hongjun YANG ; Linjing PENG ; Nanxing XIAN ; Kunning LI ; Qiwei SHI ; Hengyi TIAN ; Lifeng DONG ; Lin WANG ; Yuping ZHAO
Journal of Traditional Chinese Medicine 2025;66(9):895-900
ObjectiveTo construct a large language model (LLM)-based intelligent pre-consultation system for traditional Chinese medicine (TCM) to improve efficacy of clinical practice. MethodsA TCM large language model was fine-tuned using DeepSpeed ZeRO-3 distributed training strategy based on YAYI 2-30B. A weighted undirected graph network was designed and an agent-based syndrome differentiation model was established based on relationship data extracted from TCM literature and clinical records. An agent collaboration framework was developed to integrate the TCM LLM with the syndrome differentiation model. Model performance was comprehensively evaluated by Loss function, BLEU-4, and ROUGE-L metrics, through which training convergence, text generation quality, and language understanding capability were assessed. Professional knowledge test sets were developed to evaluate system proficiency in TCM physician licensure content, TCM pharmacist licensure content, TCM symptom terminology recognition, and meridian identification. Clinical tests were conducted to compare the system with attending physicians in terms of diagnostic accuracy, consultation rounds, and consultation duration. ResultsAfter 100 000 iterations, the training loss value was gradually stabilized at about 0.7±0.08, indicating that the TCM-LLM has been trained and has good generalization ability. The TCM-LLM scored 0.38 in BLEU-4 and 0.62 in ROUGE-L, suggesting that its natural language processing ability meets the standard. We obtained 2715 symptom terms, 505 relationships between diseases and syndromes, 1011 relationships between diseases and main symptoms, and 1 303 600 relationships among different symptoms, and constructed the Agent of syndrome differentiation model. The accuracy rates in the simulated tests for TCM practitioners, licensed pharmacists of Chinese materia medica, recognition of TCM symptom terminology, and meridian recognition were 94.09%, 78.00%, 87.50%, and 68.80%, respectively. In clinical tests, the syndrome differentiation accuracy of the system reached 88.33%, with fewer consultation rounds and shorter consultation time compared to the attending physicians (P<0.01), suggesting that the system has a certain pre- consultation ability. ConclusionThe LLM-based intelligent TCM pre-diagnosis system could simulate diagnostic thinking of TCM physicians to a certain extent. After understanding the patients' natural language, it collects all the patient's symptom through guided questioning, thereby enhancing the diagnostic and treatment efficiency of physicians as well as the consultation experience of the patients.
5.PANoptosis: a New Target for Cardiovascular Diseases
Xin-Nong CHEN ; Ying-Xi YANG ; Xiao-Chen GUO ; Jun-Ping ZHANG ; Na-Wen LIU
Progress in Biochemistry and Biophysics 2025;52(5):1113-1125
The innate immune system detects cellular stressors and microbial infections, activating programmed cell death (PCD) pathways to eliminate intracellular pathogens and maintain homeostasis. Among these pathways, pyroptosis, apoptosis, and necroptosis represent the most characteristic forms of PCD. Although initially regarded as mechanistically distinct, emerging research has revealed significant crosstalk among their signaling cascades. Consequently, the concept of PANoptosis has been proposed—an inflammatory cell death pathway driven by caspases and receptor-interacting protein kinases (RIPKs), and regulated by the PANoptosome, which integrates key features of pyroptosis, apoptosis, and necroptosis. The core mechanism of PANoptosis involves the assembly and activation of the PANoptosome, a macromolecular complex composed of three structural components: sensor proteins, adaptor proteins, and effector proteins. Sensors detect upstream stimuli and transmit signals downstream, recruiting critical molecules via adaptors to form a molecular scaffold. This scaffold activates effectors, triggering intracellular signaling cascades that culminate in PANoptosis. The PANoptosome is regulated by upstream molecules such as interferon regulatory factor 1 (IRF1), transforming growth factor beta-activated kinase 1 (TAK1), and adenosine deaminase acting on RNA 1 (ADAR1), which function as molecular switches to control PANoptosis. Targeting these switches represents a promising therapeutic strategy. Furthermore, PANoptosis is influenced by organelle functions, including those of the mitochondria, endoplasmic reticulum, and lysosomes, highlighting organelle-targeted interventions as effective regulatory approaches. Cardiovascular diseases (CVDs), the leading global cause of morbidity and mortality, are profoundly impacted by PCD. Extensive crosstalk among multiple cell death pathways in CVDs suggests a complex regulatory network. As a novel cell death modality bridging pyroptosis, apoptosis, and necroptosis, PANoptosis offers fresh insights into the complexity of cell death and provides innovative strategies for CVD treatment. This review summarizes current evidence linking PANoptosis to various CVDs, including myocardial ischemia/reperfusion injury, myocardial infarction, heart failure, arrhythmogenic cardiomyopathy, sepsis-induced cardiomyopathy, cardiotoxic injury, atherosclerosis, abdominal aortic aneurysm, thoracic aortic aneurysm and dissection, and vascular toxic injury, thereby providing critical clinical insights into CVD pathophysiology. However, the current understanding of PANoptosis in CVDs remains incomplete. First, while PANoptosis in cardiomyocytes and vascular smooth muscle cells has been implicated in CVD pathogenesis, its role in other cell types—such as vascular endothelial cells and immune cells (e.g., macrophages)—warrants further investigation. Second, although pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are known to activate the PANoptosome in infectious diseases, the stimuli driving PANoptosis in CVDs remain poorly defined. Additionally, methodological challenges persist in identifying PANoptosome assembly in CVDs and in establishing reliable PANoptosis models. Beyond the diseases discussed, PANoptosis may also play a role in viral myocarditis and diabetic cardiomyopathy, necessitating further exploration. In conclusion, elucidating the role of PANoptosis in CVDs opens new avenues for drug development. Targeting this pathway could yield transformative therapies, addressing unmet clinical needs in cardiovascular medicine.
6.Study on Brain Functional Network Characteristics of Parkinson’s Disease Patients Based on Beta Burst Period
Yu-Jie HAO ; Shuo YANG ; Shuo LIU ; Xu LOU ; Lei WANG
Progress in Biochemistry and Biophysics 2025;52(5):1279-1289
ObjectiveThe central symptom of Parkinson’s disease (PD) is impaired motor function. Beta-band electrical activity in the motor network of the basal ganglia is closely related to motor function. In this study, we combined scalp electroencephalography (EEG), brain functional network, and clinical scales to investigate the effects of beta burst-period neural electrical activity on brain functional network characteristics, which may serve as a reference for clinical diagnosis and treatment. MethodsThirteen PD patients were included in the PD group, and 13 healthy subjects were included in the healthy control group. Resting-state EEG data were collected from both groups, and beta burst and non-burst periods were extracted. A phase synchronization network was constructed using weighted phase lag indices, and the topological feature parameters of phase synchronization network were compared between the two groups across different periods and four frequency bands. Additionally, the correlation between changes in network characteristics and clinical symptoms was analyzed. ResultsDuring the beta burst period, the topological characteristic parameters of phase synchronization network in all four frequency bands were significantly higher in PD patients compared to healthy controls. The average clustering coefficient of the phase synchronization network in the beta band during the beta burst period was negatively correlated with UPDRS-III scores. In the low gamma band during the non-burst period, the average clustering coefficient of phase synchronization network was positively correlated with UPDRS and UPDRS-III scores, while UPDRS-III scores were positively correlated with global efficiency and average degree. ConclusionThe brain functional network features of PD patients were significantly enhanced during the beta burst period. Moreover, the beta-band brain functional network characteristics during the beta burst period were negatively correlated with clinical scale scores, whereas low gamma-band functional network features during the non-burst period were positively correlated with clinical scale scores. These findings indicate that motor function impairment in PD patients is associated with the beta burst period. This study provides valuable insights for the diagnosis of PD.
7.Analysis of Disease Burden and Attributable Risk Factors of Early-onset Female Breast Cancer in China and Globally from 1990 to 2021
Danqi HUANG ; Min YANG ; Wei XIONG ; Jingyi LIU ; Wanqing CHEN ; Jingbo ZHAI ; Jiang LI
Medical Journal of Peking Union Medical College Hospital 2025;16(3):777-784
To analyze the disease burden, temporal trends, and attributable risk factors of early-onset female breast cancer (EOBC) in China and globally from 1990 to 2021. Data on the absolute numbers and crude rates of incidence, mortality, and disability-adjusted life years (DALYs) for EOBC (diagnosis age < 50 years) in China and globally were extracted from the Global Burden of Disease (GBD) 2021 database. Attributable DALY proportions for five risk factors (smoking, alcohol use, physical inactivity, high red meat consumption, elevated fasting plasma glucose) and all combined risk factors were obtained. Joinpoint regression analysis was performed to assess temporal trends in age-standardized rates, quantified by annual percentage change (APC) and average annual percentage change (AAPC). From 1990 to 2021, age-standardized incidence rates of EOBC increased significantly in both China (AAPC=2.25%) and globally (AAPC=0.64%; pairwise comparison, China's age-standardized EOBC incidence is rising rapidly and approaching global levels, while mortality and DALY rates have increased over the past decade, underscoring persistent challenges in disease control. Future efforts should prioritize expanding the coverage of breast cancer screening programs, optimizing screening protocols, and enhancing public awareness of cancer prevention to mitigate the growing burden of EOBC in China.
8.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
9.Association between Mediterranean diet scores and dental caries among children and adolescents with neurodevelopmental disorders
XIONG Wenjuan, SU Yuanyuan, LIU Zhao, HUANG Xiaoqing, QU Zhiyi, CUI Shanshan
Chinese Journal of School Health 2025;46(2):172-176
Objective:
To explore the association between mediterranean diet (MD) patterns and dental caries among children and adolescents with neurodevelopmental disorders (NDD), so as to provide a basis for developing scientific anti caries strategies related to diet.
Methods:
From December 2021 to June 2024, a questionnaire survey, a three day 24 hour dietary review survey, oral health examination, physical development measurement and Childhood Autism Rating Scale (CARS) evaluation were conducted involving 147 children and adolescents aged 2-22 years with NDD from nine special education schools and rehabilitation institutions in Tianjin. Group comparisons were carried out using the Mann-Whitney U test, Chi-square test, or Fisher s exact probability method. The correlation between dietary quality and dental caries was analyzed by adopting multiple linear regression analysis and restricted cubic spline.
Results:
There were 46 children and adolescents (31.3%) in the non dental caries group and 101 children and adolescents (68.7%) in the dental caries group. The number of decayed missing and filled teeth (dmft) was 2.0 (4.0), and the MD score was 4.0 (2.0) points. There were 62 children and adolescents (42.2%) in the low MD scores group and 85 children and adolescents (57.8%) in the high MD scores group. There was no significant difference in MD scores between NDD children in the non dental caries group and those in the dental caries group [nondental caries group:4.0(2.0), dental caries group:4.0(2.0), Z= -0.14, P >0.05]. The MD scores and dmft exhibited increasing and then decreasing trend ( P total =0.02, P non lineary = 0.04 ). Children and adolescents with NDD in the MD high scores group had a lower number of dmft than those in the MD low scores group ( β= -2.00 , 95%CI =-3.39 to -0.62, P <0.05). However, in children and adolescents with NDD and CARS scores ≥30, the above association was insignificant ( β=-0.63, 95%CI=-0.29-0.15, P >0.05).
Conclusion
Children and adolescents with NDD who have dietary patterns similar to the Mediterranean diet, are found to have fewer dental caries, and this is observed among those with no or mild symptoms of autism spectrum disorder.
10.Health benefits and application strategies of small-sided games intervention for children and adolescents
LIU Wenshuo, JIN Zongqiang, WANG Xuan
Chinese Journal of School Health 2025;46(5):756-760
Abstract
To explore the mechanism of the impact of small games (SSG) on the physical health of children and adolescents and the reasonable application strategies, the study reviewes the multi-dimensional effects of SSG on the body composition, motor ability, cardiovascular health, musculoskeletal health and metabolic health of children and adolescents, and proposes the strategies for the reasonable application of SSG, which include scientifically designing training programs, emphasizing individualized differences, and strengthening monitoring and feedback. It can provide theoretical support and practical suggestions for the application of SSG in promoting the physical health of children and adolescents.


Result Analysis
Print
Save
E-mail