1.In Vitro and in vivo Component Analysis of Total Phenolic Acids from Gei Herba and Its Effect on Promoting Acute Wound Healing and Inhibiting Scar Formation
Xixian KONG ; Guanghuan TIAN ; Tong WU ; Shaowei HU ; Jie ZHAO ; Fuzhu PAN ; Jingtong LIU ; Yong DENG ; Yi OUYANG ; Hongwei WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):156-167
ObjectiveBased on ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Orbitrap-MS), to identify the in vivo and in vitro chemical components of total phenolic acids in Gei Herba(TPAGH), and to clarify the pharmacological effects and potential mechanisms of the effective part in promoting acute wound healing and inhibiting scar formation. MethodsUPLC-Q-Orbitrap-MS was used to identify the chemical components of TPAGH and ingredients absorbed in vivo after topical administration. A total of 120 ICR mice were randomly divided into the model group, recombinant human epidermal growth factor(rhEGF) group(4 mg·kg-1), and low, medium, and high dose groups of TPAGH(3.5, 7, 14 mg·kg-1), with 24 mice in each group. A full-thickness skin excision model was constructed, and each administration group was coated with the drug at the wound site, and the model group was treated with an equal volume of normal saline, the treatment was continued for 30 days, during which 8 mice from each group were sacrificed on days 6, 12, and 30. The healing of the wounds in the mice was observed, and histopathological changes in the skin tissues were dynamically observed by hematoxylin-eosin(HE), Masson, and Sirius red staining, and enzyme-linked immunosorbent assay(ELISA) was used to dynamically measure the contents of interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), vascular endothelial growth factor A(VEGFA), matrix metalloproteinase(MMP)-3 and MMP-9 in skin tissues. Network pharmacology was used to predict the targets related to the promotion of acute wound healing and the inhibition of scar formation by TPAGH, and molecular docking of key components and targets was performed. Gene Ontology(GO) biological process analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were carried out for the related targets, so as to construct a network diagram of herbal material-compound-target-pathway-pharmacological effect-disease for further exploring its potential mechanisms. ResultsA total of 146 compounds were identified in TPAGH, including 28 phenylpropanoids, 31 tannins, 23 triterpenes, 49 flavonoids, and 15 others, and 16 prototype components were found in the serum of mice. Pharmacodynamic results showed that, compared with the model group, the TPAGH groups showed a significant increase in relative wound healing rate and relative scar inhibition rate(P<0.05), and the number of new capillaries, number of fibroblasts, number of new skin appendages, epidermal regeneration rate, collagen deposition ratio, and Ⅲ/Ⅰ collagen ratio in the tissue were significantly improved(P<0.05, 0.01), the levels of IL-6, TNF-α, MMP-3 and MMP-9 in the skin tissues were reduced to different degrees, while the level of VEGFA was increased. Network pharmacology analysis screened 10 core targets, including tumor protein 53(TP53), sarcoma receptor coactivator(SRC), protein kinase B(Akt)1, signal transducer and activator of transcription 3(STAT3), epidermal growth factor receptor(EGFR) and so on, participating in 75 signaling pathways such as advanced glycation end-products(AGE)-receptor for AGE(AGE/RAGE) signaling pathway, phosphatidylinositol 3-kinase(PI3K)/Akt signaling pathway, mitogen-activated protein kinase(MAPK) signaling pathway. Molecular docking confirmed that the key components genistein, geraniin, and casuariin had good binding ability to TP53, SRC, Akt1, STAT3 and EGFR. ConclusionThis study comprehensively reflects the chemical composition of TPAGH and the absorbed components after topical administration through UPLC-Q-Orbitrap-MS. TPAGH significantly regulates key indicators of skin healing and tissue reconstruction, thereby clarifying its role in promoting acute wound healing and inhibiting scar formation. By combining in vitro and in vivo component identification with network pharmacology, the study explores how key components may bind to targets such as TP53, Akt1 and EGFR, exerting therapeutic effects through related pathways such as immune inflammation and vascular regeneration.
2.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
7.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
8.Role and Mechanism of Polyunsaturated Fatty Acids on Potassium Ion Channels
Yu-Jiao SUN ; Chao CHANG ; Zhen-Hua WU ; Yi-Fei ZHANG ; Yu-Tao TIAN
Progress in Biochemistry and Biophysics 2024;51(1):5-19
Polyunsaturated fatty acids (PUFAs) have diverse health-promoting effects, such as potentially protecting in immune, nervous, and cardiovascular systems by targeting a variety of sites, including most ion channels. Voltage-gated potassium channels of the KV7 family and large-conductance Ca2+- and voltage-activated K+ (BKCa) channels are expressed in many tissues, therefore, their physiological importance is evident from the various disorders linked to dysfunctional KV7 channels and BKCa channels. Thus, it is extremely important to learn how potassium channels are regulated by PUFAs. The aim of this review is to provide an overview of the effects of PUFAs on KV7 channels and BKCa channels functions, as well as the mechanisms underlying these effects. In summarizing reported effects of PUFAs on KV7 and BKCa channels mediated currents, we generally conclude that PUFAs increase the current amplitude, meanwhile, differential molecular and biophysical mechanisms are associated with the current increase. In KV7 channels the currents increasement are associated with a shift in the voltage dependence of channel opening and increased maximum conductance in KV7 channels, while in BKCa channels, they are associated with destabilization the pore domain closed conformation. Furthermore, PUFA effects are influenced by auxiliary subunits of KV7 and BKCa channels, associate with channels in certain tissues. although findings are conflicting. A better understanding of how PUFAs regulate KV7 and BKCa channels may offer insight into their physiological regulation and may lead to new therapeutic strategies and approaches.
9.miR-429-3p mediates memory decline by targeting MKP-1 to reduce surface GluA1-containing AMPA receptors in a mouse model of Alzheimer's disease.
Man LUO ; Yayan PANG ; Junjie LI ; Lilin YI ; Bin WU ; Qiuyun TIAN ; Yan HE ; Maoju WANG ; Lei XIA ; Guiqiong HE ; Weihong SONG ; Yehong DU ; Zhifang DONG
Acta Pharmaceutica Sinica B 2024;14(2):635-652
Alzheimer's disease (AD) is a leading cause of dementia in the elderly. Mitogen-activated protein kinase phosphatase 1 (MKP-1) plays a neuroprotective role in AD. However, the molecular mechanisms underlying the effects of MKP-1 on AD have not been extensively studied. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level, thereby repressing mRNA translation. Here, we reported that the microRNA-429-3p (miR-429-3p) was significantly increased in the brain of APP23/PS45 AD model mice and N2AAPP AD model cells. We further found that miR-429-3p could downregulate MKP-1 expression by directly binding to its 3'-untranslated region (3' UTR). Inhibition of miR-429-3p by its antagomir (A-miR-429) restored the expression of MKP-1 to a control level and consequently reduced the amyloidogenic processing of APP and Aβ accumulation. More importantly, intranasal administration of A-miR-429 successfully ameliorated the deficits of hippocampal CA1 long-term potentiation and spatial learning and memory in AD model mice by suppressing extracellular signal-regulated kinase (ERK1/2)-mediated GluA1 hyperphosphorylation at Ser831 site, thereby increasing the surface expression of GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Together, these results demonstrate that inhibiting miR-429-3p to upregulate MKP-1 effectively improves cognitive and synaptic functions in AD model mice, suggesting that miR-429/MKP-1 pathway may be a novel therapeutic target for AD treatment.
10.GPR40 novel agonist SZZ15-11 regulates glucolipid metabolic disorders in spontaneous type 2 diabetic KKAy mice
Lei LEI ; Jia-yu ZHAI ; Tian ZHOU ; Quan LIU ; Shuai-nan LIU ; Cai-na LI ; Hui CAO ; Cun-yu FENG ; Min WU ; Lei-lei CHEN ; Li-ran LEI ; Xuan PAN ; Zhan-zhu LIU ; Yi HUAN ; Zhu-fang SHEN
Acta Pharmaceutica Sinica 2024;59(10):2782-2790
G protein-coupled receptor (GPR) 40, as one of GPRs family, plays a potential role in regulating glucose and lipid metabolism. To study the effect of GPR40 novel agonist SZZ15-11 on hyperglycemia and hyperlipidemia and its potential mechanism, spontaneous type 2 diabetic KKAy mice, human hepatocellular carcinoma HepG2 cells and murine mature adipocyte 3T3-L1 cells were used. KKAy mice were divided into four groups, vehicle group, TAK group, SZZ (50 mg·kg-1) group and SZZ (100 mg·kg-1) group, with oral gavage of 0.5% sodium carboxymethylcellulose (CMC), 50 mg·kg-1 TAK875, 50 and 100 mg·kg-1 SZZ15-11 respectively for 45 days. Fasting blood glucose, blood triglyceride (TG) and total cholesterol (TC), non-fasting blood glucose were tested. Oral glucose tolerance test and insulin tolerance test were executed. Blood insulin and glucagon were measured

Result Analysis
Print
Save
E-mail