1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.In Vitro and in vivo Component Analysis of Total Phenolic Acids from Gei Herba and Its Effect on Promoting Acute Wound Healing and Inhibiting Scar Formation
Xixian KONG ; Guanghuan TIAN ; Tong WU ; Shaowei HU ; Jie ZHAO ; Fuzhu PAN ; Jingtong LIU ; Yong DENG ; Yi OUYANG ; Hongwei WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):156-167
ObjectiveBased on ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Orbitrap-MS), to identify the in vivo and in vitro chemical components of total phenolic acids in Gei Herba(TPAGH), and to clarify the pharmacological effects and potential mechanisms of the effective part in promoting acute wound healing and inhibiting scar formation. MethodsUPLC-Q-Orbitrap-MS was used to identify the chemical components of TPAGH and ingredients absorbed in vivo after topical administration. A total of 120 ICR mice were randomly divided into the model group, recombinant human epidermal growth factor(rhEGF) group(4 mg·kg-1), and low, medium, and high dose groups of TPAGH(3.5, 7, 14 mg·kg-1), with 24 mice in each group. A full-thickness skin excision model was constructed, and each administration group was coated with the drug at the wound site, and the model group was treated with an equal volume of normal saline, the treatment was continued for 30 days, during which 8 mice from each group were sacrificed on days 6, 12, and 30. The healing of the wounds in the mice was observed, and histopathological changes in the skin tissues were dynamically observed by hematoxylin-eosin(HE), Masson, and Sirius red staining, and enzyme-linked immunosorbent assay(ELISA) was used to dynamically measure the contents of interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), vascular endothelial growth factor A(VEGFA), matrix metalloproteinase(MMP)-3 and MMP-9 in skin tissues. Network pharmacology was used to predict the targets related to the promotion of acute wound healing and the inhibition of scar formation by TPAGH, and molecular docking of key components and targets was performed. Gene Ontology(GO) biological process analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were carried out for the related targets, so as to construct a network diagram of herbal material-compound-target-pathway-pharmacological effect-disease for further exploring its potential mechanisms. ResultsA total of 146 compounds were identified in TPAGH, including 28 phenylpropanoids, 31 tannins, 23 triterpenes, 49 flavonoids, and 15 others, and 16 prototype components were found in the serum of mice. Pharmacodynamic results showed that, compared with the model group, the TPAGH groups showed a significant increase in relative wound healing rate and relative scar inhibition rate(P<0.05), and the number of new capillaries, number of fibroblasts, number of new skin appendages, epidermal regeneration rate, collagen deposition ratio, and Ⅲ/Ⅰ collagen ratio in the tissue were significantly improved(P<0.05, 0.01), the levels of IL-6, TNF-α, MMP-3 and MMP-9 in the skin tissues were reduced to different degrees, while the level of VEGFA was increased. Network pharmacology analysis screened 10 core targets, including tumor protein 53(TP53), sarcoma receptor coactivator(SRC), protein kinase B(Akt)1, signal transducer and activator of transcription 3(STAT3), epidermal growth factor receptor(EGFR) and so on, participating in 75 signaling pathways such as advanced glycation end-products(AGE)-receptor for AGE(AGE/RAGE) signaling pathway, phosphatidylinositol 3-kinase(PI3K)/Akt signaling pathway, mitogen-activated protein kinase(MAPK) signaling pathway. Molecular docking confirmed that the key components genistein, geraniin, and casuariin had good binding ability to TP53, SRC, Akt1, STAT3 and EGFR. ConclusionThis study comprehensively reflects the chemical composition of TPAGH and the absorbed components after topical administration through UPLC-Q-Orbitrap-MS. TPAGH significantly regulates key indicators of skin healing and tissue reconstruction, thereby clarifying its role in promoting acute wound healing and inhibiting scar formation. By combining in vitro and in vivo component identification with network pharmacology, the study explores how key components may bind to targets such as TP53, Akt1 and EGFR, exerting therapeutic effects through related pathways such as immune inflammation and vascular regeneration.
5.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
6.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
7.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
8.Research progress on mechanism of interaction between traditional Chinese medicine and intestinal flora
Jing WU ; Wei-Yi TIAN ; Kun CAI ; Su-Fang ZHOU ; Yao-Feng LI ; Xiang-Yun CHEN ; Hai-Bing QIAN ; Sha-Sha YANG
Chinese Pharmacological Bulletin 2024;40(10):1823-1829
Modern Chinese medicine studies have confirmed that the interaction between traditional Chinese medicine(TCM)and intestinal flora is the key to the treatment of diseases with tradi-tional Chinese medicine.This interplay includes such activities as:traditional Chinese medicine can be metabolized by intestinal flora into effective components with different biological activities from its precursors;TCM chemicals improve the composition of gut microbiota,consequently ameliorating its dysfunction as well as associated pathological conditions;and gut microbiota mediate the interactions between the multiple chemicals in TCM.There-fore,it becomes an important way to understand the modern sci-entific connotation of traditional Chinese medicine theory to study the pharmacological mechanism of the efficacy of traditional Chi-nese medicine by targeting Gut microbiota.
9.Early clinical efficacy study on the efficacy of a three-stage conservative Chinese medicine external treatment for a-cute lateral ankle ligament injuries
Qing-Xin HAN ; Lei ZHANG ; Jun-Ying WU ; Xiao-Hua LIU ; Yan LI ; Tian-Xin CHEN ; Yu YI ; Mei-Qi YU
China Journal of Orthopaedics and Traumatology 2024;37(10):997-1002
Objective To evaluate the clinical effect of a new three-phase Chinese medicine(CM)external treatment for acute lateral ankle ligament injuries.Methods From July to December 2023,64 patients with acute lateral ankle ligament in-juries were randomly assigned to receive either the new three-phase CM external treatment combined with the POLICE(pro-tect,optimal loading,ice,compression,elevation)treatment(observation group)or the POLICE treatment(control group),with 32 cases in each group.The observation group consisted of 17 males and 15 females,with an average age of(30.59±3.10)years old ranging from 25 to 36 years old,while the control group included 14 males and 18 females,with an average age of(30.03±3.19)years old ranging from 24 to 37 years old.Visual analogue scale(VAS)evaluation and Figure of 8 measurement were used to evaluate the degree of ankle joint pain and swelling of the subjects at the initial enrollment and after 1 week and sixth weeks of treatment.At the same time,the American Orthopaedic Foot and Ankle Society(AOFAS)and Karlsson Ankle Function Score System were used to evaluate the improvement of ankle joint function in patients at all stages.MRI imaging was employed to observe the degree of biological healing of the anterior talofibular ligament,with the signal to noise ratio(SNR)in-dicating the level of healing.A lower SNR suggests better ligament healing,as it represents lower water content in the ligament.Results All patients completed a 6-week follow-up.There was no significant difference in VAS,AOFAS score and Karlsson score between the two groups before treatment(P>0.05).After 1 week and 6 weeks of treatment,the VAS,AOFAS score and Karlsson score of the two groups were significantly improved(P<0.05).After 1 week of treatment,the VAS score of the obser-vation group(3.21±0.87)was lower than that of the control group(4.21±1.50),and the difference was statistically significant(P<0.05).After 1 weeks of treatment,the AOFAS and Karlsson scores[(50.84±4.70)points,(49.97±4.00)points]of the ob-servation group were higher than those[(46.91±5.56)points,(46.66±5.36)points]of the control group(P<0.05).MRI images showed that after 6 weeks of treatment,the SNR value of the observation group was significantly lower than that of the control group,and the difference was statistically significant(SNR of the observation group was 75.25±16.59,the contral gruop was 85.81±15.55),(P<0.05).Conclusion Compared with the control group,the new three-phase CM external treatment is signifi-cantly effective in reducing pain and swelling,enhancing ligament repair quality,and promoting functional recovery of the an-kle joint in patients with acute lateral malleolar ligament injuries.
10.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.

Result Analysis
Print
Save
E-mail