1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Mechanism of Huanglian Jiedu Decoction in treatment of type 2 diabetes mellitus based on intestinal flora.
Xue HAN ; Qiu-Mei TANG ; Wei WANG ; Guang-Yong YANG ; Wei-Yi TIAN ; Wen-Jia WANG ; Ping WANG ; Xiao-Hua TU ; Guang-Zhi HE
China Journal of Chinese Materia Medica 2025;50(1):197-208
The effect of Huanglian Jiedu Decoction on the intestinal flora of type 2 diabetes mellitus(T2DM) was investigated using 16S rRNA sequencing technology. Sixty rats were randomly divided into a normal group(10 rats) and a modeling group(50 rats). After one week of adaptive feeding, a high-fat diet + streptozotocin was given for modeling, and fasting blood glucose >16.7 mmol·L~(-1) was considered a sign of successful modeling. The modeling group was randomly divided into the model group, high-, medium-, and low-dose groups of Huanglian Jiedu Decoction, and metformin group. After seven days of intragastric treatment, the feces, colon, and pancreatic tissue of each group of rats were collected, and the pathological changes of the colon and pancreatic tissue of each group were observed by hematoxylin-eosin staining. The changes in the intestinal flora structure of each group were observed by the 16S rRNA sequencing method. The results showed that compared with the model group, the high-, medium-, and low-dose of Huanglian Jiedu Decoction reduced fasting blood glucose levels to different degrees and showed no significant changes in body weight. The number of islet cells increased, and intestinal mucosal damage attenuated. Alpha diversity analysis revealed that Huanglian Jiedu Decoction reduced the abundance and diversity of intestinal flora in rats with T2DM; at the phylum level, low-and mediam-dose of Huanglian Jiedu Decoction reduced the abundance of Bacteroidota, Proteobacteria, and Desulfobacterota and increased the abundance of Firmicute and Bacteroidota/Firmicutes, while the high-dose of Huanglian Jiedu Decoction increased the relative abundance of Proteobacteria and Bacteroidota/Firmicutes ratio, and decreaseal the relative; abundance of Firmicute; at the genus level, Huanglian Jiedu Decoction increased the relative abundance of Allobaculum, Blautia, and Lactobacillus; LEfse analysis revealed that the biomarker of low-and medium-dose groups of Huanglian Jiedu Decoction was Lactobacillus, and the structure of the intestinal flora of the low-dose group of Huanglian Jiedu Decoction was highly similar to that of the metformin group. PICRUSt2 function prediction revealed that Huanglian Jiedu Decoction mainly affected carbohydrate and amino acid metabolic pathways. It suggested that Huanglian Jiedu Decoction could reduce fasting blood glucose and increase the number of islet cells in rats with T2DM, and its mechanism of action may be related to increasing the abundance of short-chain fatty acid-producing strains and Lactobacillus and affecting carbohydrate and amino acid metabolic pathways.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Diabetes Mellitus, Type 2/metabolism*
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Humans
;
Bacteria/drug effects*
;
Blood Glucose/metabolism*
7.Mini-barcode development based on chloroplast genome of Descurainiae Semen Lepidii Semen and its adulterants and its application in Chinese patent medicine.
Hui LI ; Yu-Jie ZENG ; Xin-Yi LI ; ABDULLAH ; Yu-Hua HUANG ; Ru-Shan YAN ; Rui SHAO ; Yu WANG ; Xiao-Xuan TIAN
China Journal of Chinese Materia Medica 2025;50(7):1758-1769
Descurainiae Semen Lepidii Semen, also known as Tinglizi, originates from Brassicaceae plants Descurainia sophia or Lepidium apetalum. The former is commonly referred to as "Southern Tinglizi(Descurainiae Semen)", while the latter is known as "Northern Tinglizi(Lepidii Semen)". To scientifically and accurately identify the origin of Tinglizi medicinal materials and traditional Chinese medicine products, this study developed a specific DNA mini-barcode based on chloroplast genome sequences. By combining the DNA mini-barcode with DNA metabarcoding technology, a method for the qualitative and quantitative identification of Tinglizi medicinal materials and Chinese patent medicines was established. In this study, chloroplast genomes of Southern Tinglizi and Northern Tinglizi and seven commonly encountered counterfeit products were downloaded from the GenBank database. Suitable polymorphic regions were identified to differentiate these species, enabling the development of the DNA mini-barcode. Using DNA metabarcoding technology, medicinal material mixtures of Southern and Northern Tinglizi, as well as the most common counterfeit product, Capsella bursa-pastoris seeds, were analyzed to validate the qualitative and quantitative capabilities of the mini-barcode and determine its minimum detection limit. Additionally, the mini-barcode was applied to Chinese patent medicines containing Tinglizi to authenticate their botanical origin. The results showed that the developed mini-barcode(psbB) exhibited high accuracy and specificity, effectively distinguishing between the two authentic origins of Tinglizi and commonly encountered counterfeit products. The analysis of mixtures demonstrated that the mini-barcode had excellent qualitative and quantitative capabilities, accurately identifying the composition of Chinese medicinal materials in mixed samples with varying proportions. Furthermore, the analysis of Chinese patent medicines revealed the presence of the adulterant species(Capsella bursa-pastoris) in addition to the authentic species(Southern and Northern Tinglizi), indicating the occurrence of adulteration in commercially available Tinglizi-containing products. This study developed a method for the qualitative and quantitative identification of multi-origin Chinese medicinal materials and related products, providing a model for research on other multi-origin Chinese medicinal materials.
DNA Barcoding, Taxonomic/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Drug Contamination
;
Genome, Chloroplast
;
Medicine, Chinese Traditional
8.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
9.Analysis of gene expression in synovial fluid and blood of patients with knee osteoarthritis of Yang deficiency and blood stasis type.
Hao-Tian HUA ; Zhong-Yi ZHANG ; Zhao-Kai JIN ; Peng-Qiang LOU ; Zhuo MENG ; An-Qi ZHANG ; Yang ZHANG ; Pei-Jian TONG
China Journal of Orthopaedics and Traumatology 2025;38(8):792-799
OBJECTIVE:
To reveal the molecular basis of knee osteoarthritis (KOA) with Yang deficiency and blood stasis syndrome by analyzing the gene expression profiles in synovial fluid and blood of KOA patients with this syndrome.
METHODS:
A total of 80 KOA patients were recruited from October 2022 to June 2024, including 40 cases in the non-Yang deficiency and blood stasis group (27 males and 13 females), with an average age of (61.75±3.45) years old;and 40 cases in the Yang deficiency and blood stasis group (22 males and 18 females), with an average age of (62.00±2.76) years old. The levels of body mass index (BMI), high-density lipoprotein (HDL), low-density lipoprotein (LDL), fibrinogen, total cholesterol, and D-dimer were recorded and summarized. Blood and synovial fluid samples from patients were collected for gene expression profile microarray sequencing, and then PCR and immunohistochemistry were used for clinical verification on the patients' synovial fluid and cartilage samples.
RESULTS:
Logistic regression analysis showed that compared with KOA patients with non-Yang deficiency and blood stasis syndrome, those with Yang deficiency and blood stasis syndrome had increased BMI, LDL, fibrinogen, total cholesterol, and D-dimer, and decreased HDL, with a clear correlation between the two groups. There were 562 differential genes in the blood, among which 322 were up-regulated and 240 were down-regulated;755 differential genes were found in the synovial fluid, with 350 up-regulated and 405 down-regulated. KEGG signaling pathway analysis of synovial fluid revealed changes in lipid metabolism-related pathways, including cholesterol metabolism, fatty acid metabolism, and PPARG signaling pathway. Analysis of the involved differential genes identified 6 genes in synovial fluid that were closely related to lipid metabolism, namely LRP1, LPL, ACOT6, TM6SF2, DGKK, and PPARG. Subsequently, PCR and immunohistochemical verification were performed using synovial fluid and cartilage samples, and the results were consistent with those of microarray sequencing.
CONCLUSION
This study explores the clinical and genomic correlation between traditional Chinese medicine syndromes and knee osteoarthritis from the perspective of lipid metabolism, and proves that abnormal lipid metabolism is closely related to KOA with Yang deficiency and blood stasis syndrome from both clinical and basic aspects.
Humans
;
Male
;
Female
;
Middle Aged
;
Synovial Fluid/metabolism*
;
Osteoarthritis, Knee/metabolism*
;
Yang Deficiency/complications*
;
Aged
10.Application of genome tagging technology in elucidating the function of sperm-specific protein 411 (Ssp411).
Xue-Hai ZHOU ; Min-Min HUA ; Jia-Nan TANG ; Bang-Guo WU ; Xue-Mei WANG ; Chang-Gen SHI ; Yang YANG ; Jun WU ; Bin WU ; Bao-Li ZHANG ; Yi-Si SUN ; Tian-Cheng ZHANG ; Hui-Juan SHI
Asian Journal of Andrology 2025;27(1):120-128
The genome tagging project (GTP) plays a pivotal role in addressing a critical gap in the understanding of protein functions. Within this framework, we successfully generated a human influenza hemagglutinin-tagged sperm-specific protein 411 (HA-tagged Ssp411) mouse model. This model is instrumental in probing the expression and function of Ssp411. Our research revealed that Ssp411 is expressed in the round spermatids, elongating spermatids, elongated spermatids, and epididymal spermatozoa. The comprehensive examination of the distribution of Ssp411 in these germ cells offers new perspectives on its involvement in spermiogenesis. Nevertheless, rigorous further inquiry is imperative to elucidate the precise mechanistic underpinnings of these functions. Ssp411 is not detectable in metaphase II (MII) oocytes, zygotes, or 2-cell stage embryos, highlighting its intricate role in early embryonic development. These findings not only advance our understanding of the role of Ssp411 in reproductive physiology but also significantly contribute to the overarching goals of the GTP, fostering groundbreaking advancements in the fields of spermiogenesis and reproductive biology.
Animals
;
Female
;
Humans
;
Male
;
Mice
;
Spermatids/metabolism*
;
Spermatogenesis/physiology*
;
Spermatozoa/metabolism*
;
Thioredoxins/genetics*

Result Analysis
Print
Save
E-mail