1.Panax notoginseng saponins regulate differential miRNA expression in osteoclast exosomes and inhibit ferroptosis in osteoblasts
Hongcheng TAO ; Ping ZENG ; Jinfu LIU ; Zhao TIAN ; Qiang DING ; Chaohui LI ; Jianjie WEI ; Hao LI
Chinese Journal of Tissue Engineering Research 2025;29(19):4011-4021
BACKGROUND:Steroid-induced femoral head necrosis is mostly caused by long-term and extensive use of hormones,but its specific pathogenesis is not yet clear and needs further study. OBJECTIVE:To screen out the differential miRNAs in osteoclast exosomes after the intervention of Panax notoginseng saponins,and on this basis,to further construct an osteogenic-related ferroptosis regulatory network to explore the potential mechanism and research direction of steroid-induced osteonecrosis of the femoral head. METHODS:MTT assay was used to detect the toxic effects of different concentrations of dexamethasone and different mass concentrations of Panax notoginseng saponins on Raw264.7 cell line.Tartrate resistant acid phosphatase staining and TUNEL assay were used to detect the effects of Panax notoginseng saponins on osteoclast inhibition and apoptosis.Exosomes were extracted from cultured osteoclasts with Panax notoginseng saponins intervention.Exosomes from different groups were sequenced to identify differentially expressed miRNAs.CytoScape 3.9.1 was used to construct and visualize the regulatory network between differentially expressed miRNAs and mRNAs.Candidate mRNAs were screened by GO analysis and KEGG analysis.Finally,the differential genes related to ferroptosis were screened out,and the regulatory network of ferroptosis-related genes was constructed. RESULTS AND CONCLUSION:(1)The concentration of dexamethasone(0.1 μmol/L)and Panax notoginseng saponins(1 736.85 μg/mL)suitable for intervention of Raw264.7 cells was determined by MTT assay.(2)Panax notoginseng saponins had an inhibitory effect on osteoclasts and could promote their apoptosis.(3)Totally 20 differentially expressed miRNAs were identified from osteoclast-derived exosome samples,and 11 differentially expressed miRNAs related to osteogenesis were predicted by target mRNAs.The regulatory networks of 4 up-regulated differentially expressed miRNAs corresponding to 155 down-regulated candidate mRNAs and 7 down-regulated differentially expressed miRNAs corresponding to 238 up-regulated candidate mRNAs were constructed.(4)Twenty-four genes related to ferroptosis were screened out from the differential genes.Finally,12 networks were constructed(miR-98-5p/PTGS2,miR-23b-3p/PTGS2,miR-425-5p/TFRC,miR-133a-3p/TFRC,miR-185-5p/TFRC,miR-23b-3p/NFE2L2,miR-23b-3p/LAMP2,miR-98-5p/LAMP2,miR-182-5p/LAMP2,miR-182-5p/TLR4,miR-23b-3p/ZFP36,and miR-182-5p/ZFP36).These results indicate that Panax notoginseng saponins may regulate osteoblast ferroptosis by regulating the expression of miRNAs derived from osteoclast exosomes,thus providing a new idea for the study of the mechanism of steroid-induced femoral head necrosis.
2.Textual Research and Clinical Application Analysis of Classic Formula Fangji Fulingtang
Xiaoyang TIAN ; Lyuyuan LIANG ; Mengting ZHAO ; Jialei CAO ; Lan LIU ; Keke LIU ; Bingqi WEI ; Yihan LI ; Jing TANG ; Yujie CHANG ; Jingwen LI ; Bingxiang MA ; Weili DANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):270-277
The classic formula Fangji Fulingtang is from ZHANG Zhongjing's Synopsis of the Golden Chamber in the Eastern Han dynasty. It is composed of Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma, with the effects of reinforcing Qi and invigorating spleen, warming Yang and promoting urination. By a review of ancient medical books, this paper summarizes the composition, original plants, processing, dosage, decocting methods, indications and other key information of Fangji Fulingtang, aiming to provide a literature basis for the research, development, and clinical application of preparations based on this formula. Synonyms of Fangji Fulingtang exist in ancient medical books, while the formula composition in the Synopsis of the Golden Chamber is more widespread and far-reaching. In this formula, Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma are the dried root of Stephania tetrandra, the dried root of Astragalus embranaceus var. mongholicus, the dried shoot of Cinnamomum cassia, the dried sclerotium of Poria cocos, and the dried root and rhizome of Glycyrrhiza uralensis, respectively. Fangji Fulingtang is mainly produced into powder, with the dosage and decocting method used in the past dynasties basically following the original formula. Each bag is composed of Stephaniae Tetrandrae Radix 13.80 g, Astragali Radix 13.80 g, Cinnamomi Ramulus 13.80 g, Poria 27.60 g, and Glycyrrhizae Radix et Rhizoma 9.20 g. The raw materials are purified, decocted in water from 1 200 mL to 400 mL, and the decoction should be taken warm, 3 times a day. Fangji Fulingtang was originally designed for treating skin edema, and then it was used to treat impediment in the Qing dynasty. In modern times, it is mostly used to treat musculoskeletal and connective tissue diseases and circulatory system diseases, demonstrating definite effects on various types of edema and heart failure. This paper clarifies the inheritance of Fangji Fulingtang and reveals its key information (attached to the end of this paper), aiming to provide a theoretical basis for the development of preparations based on this formula.
3.Textual Research and Clinical Application Analysis of Classic Formula Fangji Fulingtang
Xiaoyang TIAN ; Lyuyuan LIANG ; Mengting ZHAO ; Jialei CAO ; Lan LIU ; Keke LIU ; Bingqi WEI ; Yihan LI ; Jing TANG ; Yujie CHANG ; Jingwen LI ; Bingxiang MA ; Weili DANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):270-277
The classic formula Fangji Fulingtang is from ZHANG Zhongjing's Synopsis of the Golden Chamber in the Eastern Han dynasty. It is composed of Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma, with the effects of reinforcing Qi and invigorating spleen, warming Yang and promoting urination. By a review of ancient medical books, this paper summarizes the composition, original plants, processing, dosage, decocting methods, indications and other key information of Fangji Fulingtang, aiming to provide a literature basis for the research, development, and clinical application of preparations based on this formula. Synonyms of Fangji Fulingtang exist in ancient medical books, while the formula composition in the Synopsis of the Golden Chamber is more widespread and far-reaching. In this formula, Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma are the dried root of Stephania tetrandra, the dried root of Astragalus embranaceus var. mongholicus, the dried shoot of Cinnamomum cassia, the dried sclerotium of Poria cocos, and the dried root and rhizome of Glycyrrhiza uralensis, respectively. Fangji Fulingtang is mainly produced into powder, with the dosage and decocting method used in the past dynasties basically following the original formula. Each bag is composed of Stephaniae Tetrandrae Radix 13.80 g, Astragali Radix 13.80 g, Cinnamomi Ramulus 13.80 g, Poria 27.60 g, and Glycyrrhizae Radix et Rhizoma 9.20 g. The raw materials are purified, decocted in water from 1 200 mL to 400 mL, and the decoction should be taken warm, 3 times a day. Fangji Fulingtang was originally designed for treating skin edema, and then it was used to treat impediment in the Qing dynasty. In modern times, it is mostly used to treat musculoskeletal and connective tissue diseases and circulatory system diseases, demonstrating definite effects on various types of edema and heart failure. This paper clarifies the inheritance of Fangji Fulingtang and reveals its key information (attached to the end of this paper), aiming to provide a theoretical basis for the development of preparations based on this formula.
4.Role of ATG12 in The Development of Disease
Wei LIU ; Rui TIAN ; Ce-Fan ZHOU ; Jing-Feng TANG
Progress in Biochemistry and Biophysics 2025;52(5):1081-1098
Autophagy, a highly conserved cellular degradation mechanism, maintains intracellular homeostasis by removing damaged organelles and abnormal proteins. Its dysregulation is closely associated with various diseases. Autophagy-related protein 12 (ATG12), a core member of the ubiquitin-like protein family, covalently binds to ATG5 through a ubiquitin-like conjugation system to form the ATG12-ATG5-ATG16L1 complex. This complex directly regulates the formation and maturation of autophagosomes, making ATG12 a key molecule in the initiation of autophagy. Recent studies have revealed that ATG12 functions extend far beyond the classical autophagy context. It promotes apoptosis by binding to anti-apoptotic proteins of the Bcl-2 family (e.g., Bcl-2 and Mcl-1) and enhances host antiviral immunity by regulating the NF-κB and interferon signaling pathways. Moreover, ATG12 deficiency can lead to mitochondrial biogenesis impairment, energy metabolism disorders, and substrate-dependent metabolic shifts, underscoring its pivotal role in cellular metabolic homeostasis. At the disease level, dysregulation of ATG12 expression is closely linked to tumorigenesis and cancer progression. By modulating the dynamic balance between autophagy and apoptosis, ATG12 influences cancer cell proliferation, metastasis, and chemoresistance. Notably, ATG12 is abnormally overexpressed in multiple cancers, including breast, liver, and gastric cancer, highlighting its potential as a therapeutic target. Furthermore, in neurodegenerative diseases such as Parkinson’s disease, ATG12 mitigates protein toxicity by enhancing mitochondrial autophagy. In cardiovascular diseases, it alleviates ischemia-reperfusion injury by regulating cardiomyocyte autophagy and apoptosis, demonstrating its broad regulatory role across various pathological conditions. Genetic studies further underscore the clinical significance of ATG12. Polymorphisms in the ATG12 gene (e.g., rs26537 and rs26538) have been significantly associated with the risk of head and neck squamous cell carcinoma, hepatocellular carcinoma, and atrophic gastritis. Notably, the risk allele of rs26537 enhances ATG12 promoter activity, leading to its overexpression and promoting tumorigenesis. These findings provide a molecular basis for individualized risk assessment and targeted interventions based on ATG12 genotype. Despite significant progress, many aspects of ATG12 biology remain unclear. The precise regulatory mechanisms of its post-translational modifications (e.g., ubiquitination and acetylation) are yet to be fully elucidated. Additionally, the molecular pathways underlying its non-canonical functions, such as metabolic regulation and immune modulation, require further investigation. Moreover, the functional heterogeneity of ATG12 in different tumor microenvironments and its role in drug resistance warrant in-depth exploration. Future research should integrate advanced technologies such as cryo-electron microscopy, single-cell sequencing, and organoid models to decipher the intricate regulatory network of ATG12. Additionally, developing small-molecule inhibitors or gene-editing tools targeting its protein interaction interfaces (e.g., the ATG12-ATG3 binding domain) may help overcome current therapeutic challenges. Through interdisciplinary collaboration and clinical translation, ATG12 holds promise as a next-generation molecular target for precision intervention in autophagy-related diseases. This review summarizes the structure and function of ATG12, its role in autophagy initiation, its physiological functions, and its involvement in disease pathogenesis. Furthermore, it discusses future research directions and potential challenges, emphasizing ATG12’s potential as a biomarker and therapeutic target in autophagy-related diseases.
5.The validation of radiation-responsive lncRNAs in radiation-induced intestinal injury and their dose-effect relationship
Ying GAO ; Xuelei TIAN ; Qingjie LIU ; Hua ZHAO ; Wei ZHANG
Chinese Journal of Radiological Health 2025;34(2):270-278
Objective To explore the feasibility of long non-coding RNAs (lncRNAs) as biomarkers for radiation-induced intestinal injury. Methods Mice were exposed to 15 Gy of 60Co γ-rays to the abdominal area. The pathological changes in intestinal tissues were analyzed at 72 h post-irradiation to confirm the successful establishment of the radiation-induced intestinal injury model. Real-time quantitative PCR was conducted to detect the expression of candidate radiation-responsive lncRNAs in the jejunum, jejunal crypts, colon tissues, and plasma of irradiated mice. Human intestinal epithelial cell line HIEC-6 and human colon epithelial cell line NCM460 were exposed to 0, 5, 10, and 15 Gy of 60Co γ-rays. The expression levels of candidate lncRNAs were measured at 4, 24, 48, and 72 h post-irradiation to observe their changes with the irradiation dose. Results Pathological analysis showed that abdominal irradiation with 15 Gy successfully established an acute radiation-induced intestinal injury mouse model. Real-time quantitative PCR showed that Dino, Lncpint, Meg3, Dnm3os, Trp53cor1, Pvt1, and Neat1 were significantly upregulated following the occurrence of radiation-induced intestinal injury (P < 0.05). Among them, Meg3 and Dnm3os in mouse plasma were significantly upregulated (P < 0.05), while Gas5 was significantly downregulated (P < 0.05). In HIEC-6 and NCM460 cells, the expression levels of DINO, MEG3, DNM3OS, and GAS5 showed dose-dependent patterns at certain time points (P < 0.05). Conclusion The lncRNAs encoded by MEG3, DNM3OS, and GAS5 in intestinal epithelial cells are responsive to ionizing radiation. Consistent differential expression changes were detected in mouse plasma and intestinal tissues, indicating their potential as biomarkers for radiation-induced intestinal injury.
6.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
7.PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in nasopharyngeal carcinoma
Ranran FENG ; Yilin GUO ; Meilin CHEN ; Ziying TIAN ; Yijun LIU ; Su JIANG ; Jieyu ZHOU ; Qingluan LIU ; Xiayu LI ; Wei XIONG ; Lei SHI ; Songqing FAN ; Guiyuan LI ; Wenling ZHANG
Journal of Pathology and Translational Medicine 2025;59(1):68-83
Background:
Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.
Methods:
We collected clinical samples of NPC to verify the relationship between PLUNC and PD-L1. PLUNC plasmid was transfected into NPC cells, and the variation of PD-L1 was verified by western blot and immunofluorescence. In NPC cells, we verified the relationship of PD-L1, activating transcription factor 3 (ATF3), and β-catenin by western blot and immunofluorescence. Later, we further verified that PLUNC regulates PD-L1 through β-catenin. Finally, the effect of PLUNC on β-catenin was verified by co-immunoprecipitation (Co-IP).
Results:
We found that PLUNC expression was lower in NPC tissues than in paracancer tissues. PD-L1 expression was opposite to that of PLUNC. Western blot and immunofluorescence showed that β-catenin could upregulate ATF3 and PD-L1, while PLUNC could downregulate ATF3/PD-L1 by inhibiting the expression of β-catenin. PLUNC inhibits the entry of β-catenin into the nucleus. Co-IP experiments demonstrated that PLUNC inhibited the interaction of DEAD-box helicase 17 (DDX17) and β-catenin.
Conclusions
PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in NPC.
8.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
9.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
10.PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in nasopharyngeal carcinoma
Ranran FENG ; Yilin GUO ; Meilin CHEN ; Ziying TIAN ; Yijun LIU ; Su JIANG ; Jieyu ZHOU ; Qingluan LIU ; Xiayu LI ; Wei XIONG ; Lei SHI ; Songqing FAN ; Guiyuan LI ; Wenling ZHANG
Journal of Pathology and Translational Medicine 2025;59(1):68-83
Background:
Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.
Methods:
We collected clinical samples of NPC to verify the relationship between PLUNC and PD-L1. PLUNC plasmid was transfected into NPC cells, and the variation of PD-L1 was verified by western blot and immunofluorescence. In NPC cells, we verified the relationship of PD-L1, activating transcription factor 3 (ATF3), and β-catenin by western blot and immunofluorescence. Later, we further verified that PLUNC regulates PD-L1 through β-catenin. Finally, the effect of PLUNC on β-catenin was verified by co-immunoprecipitation (Co-IP).
Results:
We found that PLUNC expression was lower in NPC tissues than in paracancer tissues. PD-L1 expression was opposite to that of PLUNC. Western blot and immunofluorescence showed that β-catenin could upregulate ATF3 and PD-L1, while PLUNC could downregulate ATF3/PD-L1 by inhibiting the expression of β-catenin. PLUNC inhibits the entry of β-catenin into the nucleus. Co-IP experiments demonstrated that PLUNC inhibited the interaction of DEAD-box helicase 17 (DDX17) and β-catenin.
Conclusions
PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in NPC.

Result Analysis
Print
Save
E-mail