1.Prognostic Significance of KMT2D Gene Mutation and Its Co-mutated Genes in Patients with Diffuse Large B-Cell Lymphoma
Mutibaier·MIJITI ; Xiaolong QI ; Renaguli·ABULAITI ; Wenxin TIAN ; Sha LIU ; Weiyuan MA ; Zengsheng WANG ; Li AN ; Min MAO ; Muhebaier·ABUDUER ; Yan LI
Cancer Research on Prevention and Treatment 2025;52(2):127-132
Objective To explore the clinical characteristics of patients with diffuse large B-cell lymphoma (DLBCL) accompanied with KMT2D gene mutation and the impact of its co-mutated genes on prognosis. Methods Clinical data of 155 newly diagnosed DLBCL patients were obtained. The second-generation sequencing method was used to detect 475 hotspot genes, including KMT2D mutation. Patients were divided into the KMT2D mutation group and KMT2D wild-type group based on the presence or absence of KMT2D gene mutation. Clinical characteristics, differences in co-mutated genes, and survival differences between the two groups were compared. Results The frequency of KMT2D mutation was 31%, which is predominantly observed in elderly patients (P=0.07) and less in the double-expressor phenotype (P=0.07). Compared with the KMT2D wild-type group, KMT2D gene mutation was associated with higher co-mutation rates of CDKN2A (OR=2.82, P=0.01) and BCL2 (OR=3.84, P=0.016), while being mutually exclusive with MYC gene mutation (OR=0.11, P=0.013). In univariate survival analysis, no statistically significant difference in overall survival (OS) was found between the KMT2D mutation group and the wild-type group (P=0.54). Further analysis of the prognostic significance of KMT2D with other gene mutations indicated that patients with KMT2DmutBTG2mut had poorer OS than those with KMT2Dwt BTG2mut (P=0.07) and KMT2Dwt BTG2wt (P=0.05). On the contrary, patients with KMT2Dmut CD79Bmut had better OS than those with KMT2Dmut CD79Bwt (P=0.09), with no prognostic impact observed for other co-mutated genes. Multivariate Cox regression analysis revealed that Ann Arbor stages Ⅲ and Ⅳ (HR=2.751, 95%CI: 1.169-6.472, P=0.02), elevated LDH levels (HR=2.461, 95%CI: 1.396-4.337, P=0.002), Ki-67 index>80% (HR=1.875, 95%CI: 1.066-3.299, P=0.029), and KMT2DmutBTG2mut(HR=4.566, 95%CI: 1.348-15.471, P=0.015) were independent risk factors for OS in patients with DLBCL (P<0.05). Conclusion DLBCL patients with KMT2D mutation often have multiple gene mutations, among which patients with a co-mutated BTG2 gene have poor prognosis.
2.Analysis of clinical infection characteristics of multidrug-resistant organisms in hospitalized patients in a tertiary sentinel hospital in Shanghai from 2021 to 2023
Qi MAO ; Tenglong ZHAO ; Xihong LYU ; Zhiyuan GU ; Bin CHEN ; Lidi ZHAO ; Xifeng LI ; Xing ZHANG ; Liang TIAN ; Renyi ZHU
Shanghai Journal of Preventive Medicine 2025;37(2):156-159
ObjectiveTo understand the infection characteristics of multidrug-resistant organisms (MDROs) in hospitalized patients in a tertiary sentinel hospital in Shanghai, so as to provide an evidence for the development of targeted prevention and control measures. MethodsData of MDROs strains and corresponding medical records of some hospitalized patients in a hospital in Shanghai from 2021 to 2023 were collected, together with an analysis of the basic information, clinical treatment, underlying diseases and sources of sample collection. ResultsA total of 134 strains of MDROs isolated from hospitalized patients in this hospital were collected from 2021 to 2023 , including 63 strains of methicillin-resistant Staphylococcus aureus (MRSA), 57 strains of carbapenem-resistant Acinetobacter baumannii (CRAB), and 14 strains of carbapenem-resistant Klebsiella pneumoniae (CRKP). Of the 134 strains, 30 strains were found in 2021, 47 strains in 2022 and 57 strains in 2023. The male-to-female ratio of patients was 2.05∶1, with the highest percentage (70.90%) in the age group of 60‒<90 years. The primary diagnosis was mainly respiratory disease, with lung and respiratory tract as the cheif infection sites. There was no statistically significant difference in the distribution of strains between different genders and infection sites (P>0.05). However, the differences in the distribution of strains between different ages and primary diagnosis were statistically significant (P<0.05). Patients who were admitted to the intensive care unit (ICU), had urinary tract intubation, were not artery or vein intubated, were not on a ventilator, were not using immunosuppresants or hormones, and were not applying radiotherapy or chemotherapy were in the majority. There was no statistically significant difference in the distribution of strains for whether received radiotherapy or chemotherapy or not (P>0.05), while the differences in the distribution of strains with ICU admission history, urinary tract intubation, artery or vein intubation, ventilator use, and immunosuppresants or hormones use or not were statistically significant (all P<0.05). The type of specimen was mainly sputum, the hospitalized ward was mainly comprehensive ICU, the sampling time was mainly in the first quarter throughout the year, the number of underlying diseases was mainly between 1 to 2 kinds, the application of antibiotics ≥4 kinds, and those who didn’t receive any surgery recently accounted for the most. There were statistically significant differences in the distribution of strains between different specimen types, wards occupied and history of ICU stay (P<0.05), but no statistically significant difference in the distribution of strains between different sampling times, number of underlying diseases and types of antibiotics applied (P>0.05). ConclusionThe situation of prevention and control on MDROs in this hospital is still serious. Focus should be placed on high-risk factors’ and infection monitoring and preventive measures should be strengthened to reduce the incidence rate of MDROs infection.
3.International experience and enlightenment of patient engagement in drug regulation
Jingjing WU ; Kaixin ZENG ; Yufei YANG ; Mengyan TIAN ; Fangzheng DONG ; Yimeng ZHANG ; Jun LI ; Ningying MAO
China Pharmacy 2025;36(8):908-913
OBJECTIVE To provide suggestions for improving the path and system construction of patient engagement in drug regulation in China. METHODS By reviewing initiatives and experiences from the United States (U. S.), European Union (EU), and Japan in promoting patient engagement, this study summarizes the roles and contributions of patients in the entire drug regulatory process internationally. Combining China’s current progress and challenges in patient engagement, specific proposals are formulated to refine regulatory pathways and institutional systems. RESULTS & CONCLUSIONS With growing global emphasis on patient engagement as a regulatory strategy, countries or regions such as the U.S., EU, and Japan have established clear policies, designated oversight agencies, and developed diversified pathways for patient engagement. Patients contribute to regulatory processes through advisory meetings, direct decision-making roles, and leveraging lived experiences and expertise to optimize drug evaluation and monitoring. In contrast, China’s patient engagement remains primarily limited to clinical value- oriented drug development, lacking formal policy guidance. It is recommended that China, based on its existing policy system, further strengthen the construction of a safeguard system for patient engagement, improve the capacity building and pathway models for patient participation in pharmaceutical regulation, and promote the continuous development of patient engagement in pharmaceutical regulation in our country.
4.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection.
5.Expert consensus on periareolar concealed uniportal video-assisted thoracoscopic lung resection
Bin ZHENG ; Dong TIAN ; Zhangfan MAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(06):731-737
With the ongoing evolution of minimally invasive thoracic surgery techniques, innovative anatomical approaches facilitating rapid perioperative recovery while achieving optimal aesthetic results and pain-free outcomes have become a pivotal direction in pulmonary resection. While periareolar incisions have demonstrated well-established advantages in cosmetic preservation and pain management in breast and thyroid procedures, the standardization of this approach for video-assisted thoracoscopic pulmonary resection requires further refinement. This consensus synthesizes the collective expertise of China's leading thoracic surgery centers in periareolar approach pulmonary resections. It aims to establish comprehensive clinical consensus that encompasses prerequisite surgical criteria, standardized perioperative management protocols, technically optimized operative procedures, and evidence-based complication prevention and management strategies, ultimately providing guidance for the standardized application of this innovative surgical technique.
6.Clinical trial of Morinda officinalis oligosaccharides in the continuation treatment of adults with mild and moderate depression
Shu-Zhe ZHOU ; Zu-Cheng HAN ; Xiu-Zhen WANG ; Yan-Qing CHEN ; Ya-Ling HU ; Xue-Qin YU ; Bin-Hong WANG ; Guo-Zhen FAN ; Hong SANG ; Ying HAI ; Zhi-Jie JIA ; Zhan-Min WANG ; Yan WEI ; Jian-Guo ZHU ; Xue-Qin SONG ; Zhi-Dong LIU ; Li KUANG ; Hong-Ming WANG ; Feng TIAN ; Yu-Xin LI ; Ling ZHANG ; Hai LIN ; Bin WU ; Chao-Ying WANG ; Chang LIU ; Jia-Fan SUN ; Shao-Xiao YAN ; Jun LIU ; Shou-Fu XIE ; Mao-Sheng FANG ; Wei-Feng MI ; Hong-Yan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(6):815-819
Objective To observe the efficacy and safety of Morinda officinalis oligosaccharides in the continuation treatment of mild and moderate depression.Methods An open,single-arm,multi-center design was adopted in our study.Adult patients with mild and moderate depression who had received acute treatment of Morinda officinalis oligosaccharides were enrolled and continue to receive Morinda officinalis oligosaccharides capsules for 24 weeks,the dose remained unchanged during continuation treatment.The remission rate,recurrence rate,recurrence time,and the change from baseline to endpoint of Hamilton Depression Scale(HAMD),Hamilton Anxiety Scale(HAMA),Clinical Global Impression-Severity(CGI-S)and Arizona Sexual Experience Scale(ASEX)were evaluated.The incidence of treatment-related adverse events was reported.Results The scores of HAMD-17 at baseline and after treatment were 6.60±1.87 and 5.85±4.18,scores of HAMA were 6.36±3.02 and 4.93±3.09,scores of CGI-S were 1.49±0.56 and 1.29±0.81,scores of ASEX were 15.92±4.72 and 15.57±5.26,with significant difference(P<0.05).After continuation treatment,the remission rate was 54.59%(202 cases/370 cases),and the recurrence rate was 6.49%(24 cases/370 cases),the recurrence time was(64.67±42.47)days.The incidence of treatment-related adverse events was 15.35%(64 cases/417 cases).Conclusion Morinda officinalis oligosaccharides capsules can be effectively used for the continuation treatment of mild and moderate depression,and are well tolerated and safe.
7.In Vitro and in Vivo Evaluation of Scutellarin-phospholipid Complex Nanoemulsion and Analysis of Its Activity in Ameliorating LPS-induced Vascular Endothelial Injury
Tian LUO ; Zhiyong HE ; Xiangjun MAO ; Xue LIU ; Jinggang HE ; Yuan ZHI ; Xiangchun SHEN ; Qianli XU ; Ling TAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(10):159-168
ObjectiveTo evaluate some properties of scutellarin-phospholipid complex nanoemulsion(SCU-PC-NE), such as release, cell uptake and tissue distribution, and to investigate its effect on ameliorating lipopolysaccharide(LPS)-induced vascular endothelial injury. MethodSCU-PC-NE was prepared by weighting SCU-PC, ethyl oleate, Kolliphor HS15, 1,2-propylene glycol(50, 400, 514.3, 85.7 mg), respectively. And the appearance of SCU-PC-NE was observed by transmission electron microscope, the average paticle size and Zeta potential were measured by nanopotential particle size analyzer. The cumulative release of SCU-PC-NE in vitro was measured by dynamic dialysis, thiazolyl blue(MTT) colorimetric assay was used to investigate the effect of SCU-PC-NE on the viability of human umbilical vein endothelial cells(HUVECs), the inverted fluorescence microscope and flow cytometry were used to investigate cell uptake of HUVECs by SCU-PC-NE in vitro using coumarin 6 as a fluorescent probe, the tissue distribution of DiR/SCU-PC-NE labeled by near infrared fluorescent dyes was obeserved by small animal in vivo imaging system. The inflammation injury model was established by co-incubation with LPS(1 mg·L-1) and HUVECs, the effect of SCU-PC-NE on the levels of interleukin(IL)-1β and IL-6 were determined by enzyme-linked immunosorbent assay(ELISA), 18 Kunming male mice were randomly divided into blank group, model group, blank preparation group(equivalent to high dose group), SCU group and SCU-PC-NE low and high dose groups(5, 10 mg·kg-1), 3 mice in each group, and the drug administration groups were administered once in the tail vein at the corresponding dose every 48 h, equal volume of normal saline was given to the blank group and the model group, and the drug was administered for 4 consecutive times. Except for the blank group, the endothelial inflammatory injury was induced by intraperitoneal injection of LPS(10 mg·kg-1) at 12 h before the last administration in each group. Hematoxylin-eosin(HE) staining was used to investigate the effect of SCU-PC-NE on the histopathological changes in the thoracic aorta of mice. ResultThe appearance of SCU-PC-NE displayed pale yellow milky light, mostly spherical with rounded appearance and relatively uniform particle size distribution, with the average particle size of 35.31 nm, Zeta potential of 7.23 mV, and the encapsulation efficiency of 75.24%. The cumulative release in vitro showed that SCU-PC-NE exhibited sustained release properties compared with SCU. The cell viability of SCU-PC-NE was >90% at a concentration range of 1.05-8.4 mg·L-1. The results of cellular uptake experiments showed that the cellular uptake ability of SCU-PC-NE was significantly enhanced when compared with the SCU group(P<0.01). Compared with normal mice, the results of tissue distribution showed that the fluorescence intensity of DiR/SCU-PC-NE was significantly enhanced in the spleen, kidney, brain and thoracic aorta of mice at different time points after intraperitoneal injection of LPS(P<0.05, P<0.01), especially in thoracic aorta. ELISA results showed that the levels of IL-1β and IL-6 in the model group were significantly increased when compared with the blank group(P<0.05, P<0.01), and compare with the model group, all administration groups significantly down-regulated IL-1β level, with the strongest effect in the SCU-PC-NE high-dose group(P<0.01), and all administration groups significantly down-regulated IL-6 level, with the strongest effect in the SCU-PC-NE low-dose group(P<0.05). Compare with the blank group, the results of HE staining showed that the endothelial cells were damaged, the elastic fibers were broken and arranged loosely in the model group, although similar vascular injury could be observed in the blank preparation group, SCU group and SCU-PC-NE low-dose group, the vascular endothelial damage was significantly reduced in the high-dose group of SCU-PC-NE, which had a better effect than that in the SCU group. ConclusionSCU-PC-NE can promote the uptake of drugs by endothelial cells and effectively enriched in the site of vascular endothelial injury caused by LPS, suggesting that it has a protective effect on vascular endothelial injury and is a good carrier of SCU.
8.Current Research and Development of Antigenic Epitope Prediction Tools
Zi-Hao LI ; Yuan WANG ; Tian-Tian MAO ; Zhi-Wei CAO ; Tian-Yi QIU
Progress in Biochemistry and Biophysics 2024;51(10):2532-2544
Adaptive immunity is a critical component of the human immune system, playing an essential role in identifying antigens and orchestrating a tailored immune response. This review delves into the significant strides made in the development of epitope prediction tools, their integration into vaccine design, and their pivotal role in enhancing immunotherapy strategies. The review emphasizes the transformative potential of these tools in refining our understanding and application of immune responses. Adaptive immunity distinguishes itself from innate immunity by its ability to recognize specific antigens and remember past infections, leading to quicker and more effective responses upon subsequent exposures. This facet of immunity involves complex interactions between various cell types, primarily B cells and T cells, which recognize distinct epitopes presented by antigens. Epitopes are small sequences or configurations on antigens that are recognized by the immune receptors on B cells and T cells, acting as the focal points of immune recognition and response. Epitopes can be broadly classified into two types: linear (or sequential) epitopes and conformational (or discontinuous) epitopes. Linear epitopes consist of a sequence of amino acids in a protein that are recognized by B cells and T cells in their primary structure form. Conformational epitopes, on the other hand, are formed by spatially distinct amino acids that come together in the tertiary structure of the protein, often recognized by the immune system only when the protein folds into its native conformation. The role of epitopes in the immune response is critical as they are the primary triggers for the activation of B cells and T cells. When an epitope is recognized, it can stimulate B cells to produce antibodies, mobilize helper T cells to secrete cytokines, or prompt cytotoxic T cells to kill infected cells. These actions form the basis of the adaptive immune response, tailored to eliminate specific pathogens or infected cells effectively. The prediction of B cell and T cell epitopes has evolved with advances in computational biology, leading to the development of several sophisticated tools that utilize a variety of algorithms to predict the likelihood of epitope regions on antigens. Tools employing machine learning methods, such as support vector machines (SVMs), XGBoost, random forest, analyze large datasets of known epitopes to classify new sequences as potential epitopes based on their similarity to known data. Moreover, deep learning has emerged as a powerful method in epitope prediction, leveraging neural networks capable of learning high-dimensional data from vast amounts of immunological inputs to identify patterns that may not be evident to other predictive models. Deep learning models, such as convolutional neural networks (CNNs), recurrent neural networks (RNNs) and ESM protein language model have demonstrated superior accuracy in mapping the nonlinear relationships inherent in protein structures and epitope interactions. The application of epitope prediction tools in vaccine design is transformative, enabling the development of epitope-based vaccines that can elicit targeted immune responses against specific parts of the pathogen. These vaccines, by focusing the immune response on highly specific regions of the pathogen, can offer high efficacy and reduced side effects. Similarly, in cancer immunotherapy, epitope prediction tools help identify tumor-specific antigens that can be targeted to develop personalized immunotherapeutic strategies, thereby enhancing the precision of cancer treatments. The future of epitope prediction technology appears promising, with ongoing advancements anticipated to enhance the precision and efficiency of these tools further. The integration of broader immunological data, such as patient-specific immune profiles and pathogen variability, along with advances in AI and machine learning, will likely drive the development of more adaptive, robust, and clinically relevant prediction models. This will not only improve the effectiveness of vaccines and immunotherapies but also contribute to our broader understanding of immune mechanisms, potentially leading to breakthroughs in the treatment and prevention of multiple diseases. In conclusion, the development and refinement of epitope prediction tools stand as a cornerstone in the advancement of immunological research and therapeutic design, highlighting a path toward more precise and personalized medicine. The ongoing integration of computational models with experimental immunology holds the promise of revolutionizing our approach to combating infectious diseases and cancer.
9.Risk factors for intraoperative pain during phacoemulsification in cataract patients
Su XU ; Jingzhi SHAO ; Shanshan DU ; Yuhang ZHANG ; Wei SI ; Yi MAO ; Gengqi TIAN ; Fengyan ZHANG
International Eye Science 2024;24(12):2002-2006
AIM: To determine the patient-related risk factors for pain during phacoemulsification.METHODS: Retrospective case-control study. A total of 62 patients(62 eyes)diagnosed as cataract in the First Affiliated Hospital of Zhengzhou University from December 2023 to January 2024 were included. The numeric rating scale was used to assess the pain level within 5 min postoperatively. The highest pain value was used as the primary outcome during the procedure. Based on pain values, patients were divided into pain group(n=25)and pain-free group(n=37). Subsequently, patients in the pain group were further divided into mild(n=16), moderate(n=7), and severe groups(n=2). Spearman correlation and Logistic regression analysis were conducted to determine risk factors for pain during the phacoemulsification.RESULTS: Binary Logistic regression showed preoperative sleep durations and times of operations were important risk factors for intraoperative pain(all P<0.05). Spearman analysis showed that intraoperative pain was negatively correlated with sleep duration(rs=-0.386, P=0.002), and positively correlated with times of operations(rs=0.421, P<0.001). The results of the ordinal Logistic regression analysis showed that for every additional hour of sleep, the likelihood of experiencing one higher level of intraoperative pain decreased by 37.60%(OR=0.376, P=0.014). In contrast, the times of operations did not show a statistically significant difference(P=0.083). Receiver operating characteristic curve showed a joint prediction model of sleep duration and operative times with an area under the curve of 0.809, 84% sensitivity, and 73% specificity.CONCLUSION: The intraoperative pain during phacoemulsification is negatively correlated with sleep duration and positively correlated with times of operations.
10.Mechanism of Xibining Ⅱ Combined with ADSC-Exos in Improving Knee Osteoarthritis by Regulating Mitochondrial Autophagy
Junfeng KANG ; Lishi JIE ; Houyu FU ; Taiyang LIAO ; Lei SHI ; Zishan SU ; Likai YU ; Yibao WEI ; Deren LIU ; Di TIAN ; Jun MAO ; Peimin WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(11):111-119
ObjectiveTo observe the effects of Xibining (XBN) and adipose stem cell exosome (ADSC-Exos) in the cases of separate or joint application on cartilage degeneration and mitochondrial autophagy and explore its mechanism of action to improve knee osteoarthritis (KOA). MethodSD rats were divided into a sham operation group (sham group), a model group, an ADSC-Exos group (Exos group), an XBN group, and an ADSC-Exos+XBN group (Exos+XBN group). KOA model was established by using anterior cruciate ligament transection (ACLT). The pain sensitivity status of rats was evaluated, and the degeneration degree of the knee joint and cartilage tissue was detected by Micro-CT and pathological staining. The expression of p62 and LC3B was observed by immunofluorescence, and the serum levels of TNF-α, IL-1β, IL-6, and IL-15 in rats were detected by ELISA. The Western blot was used to detect the protein expression levels of MMP-3, MMP-13, ADAMTS5, ColⅡ, TIMP, ACAN, PINK1, Parkin, p62, and LC3A/B. ResultCompared with the sham group, rats in the model group showed decreased cold-stimulated foot-shrinkage thresholds and mechanical pain sensitivity thresholds, varying degrees of abrasion and loss of cartilage tissue, degeneration of cartilage tissue, elevated serum IL-1β, IL-6, IL-15, and TNF-α levels (P<0.01), and increased protein expression of MMP-3, MMP-13, and ADAMTS5 in cartilage tissue. In addition, the protein expression of ColⅡ, TIMP1, and ACAN was decreased (P<0.01). Compared with the model group, rats in each treatment group showed higher cold-stimulated foot-shrinkage thresholds and mechanical pain sensitivity thresholds, reduced cartilage tissue degeneration, lower serum levels of IL-1β, IL-6, IL-15, and TNF-α (P<0.05,P<0.01), decreased protein expression of MMP-3, MMP-13, and ADAMTS5, and higher protein expression of Cold, TIMP1, and ACAN in cartilage tissue (P<0.05,P<0.01). Moreover, the changes were the most obvious in the Exos+XBN group. ConclusionBoth ADSCs-Exos and XBN can increase the level of mitochondrial autophagy in chondrocytes and delay cartilage tissue degeneration by promoting the expression of the PINK1/Parkin signaling pathway, and the combination of the two can enhance the therapeutic effect.

Result Analysis
Print
Save
E-mail