1.Mechanism of agomelatine alleviating anxiety-and depression-like behaviors in APP/PS1 transgenic mice
Tian LI ; Yuhua REN ; Yanping GAO ; Qiang SU
Chinese Journal of Tissue Engineering Research 2025;29(6):1176-1182
BACKGROUND:Agomelatine is a clinically proven treatment for neuropsychiatric symptoms,such as anxiety and depression.Furthermore,our previous study has demonstrated that agomelatine ameliorates cognitive behaviors,hippocampal synaptic plasticity,and brain pathology in a mouse model of Alzheimer's disease.However,it remains unclear whether agomelatine can improve anxiety and depression-like behaviors in Alzheimer's disease model mice. OBJECTIVE:To investigate the improving effects of agomelatine on anxiety-and depression-like behaviors in APP/PS1 transgenic mice and its underlying molecular mechanisms. METHODS:(1)Eighteen APP/PS1 transgenic mice were randomly divided into model control group(n=9)and model intervention group(n=9).Another wild-type mice were randomized into control group(n=9)and intervention group(n=9).Model intervention group and intervention group were intraperitoneally injected with 10 mg/kg agomelatine per day for 31 continuous days.Behavioral experiments,including the elevated cross maze and forced swimming tests,and mRNA sequencing of the hippocampus were then performed.(2)Mouse hippocampal neuronal cell lines(HT22)and brain microvascular endothelial cell lines(bEnd.3)were cultured and divided into four groups:blank group without any drug,drug group with 20 μmol/L agomelatine,model group with 10 μmol/L β-amyloid 1-42,and experimental group with 10 μmol/L β-amyloid 1-42+20 μmol/L agomelatine.After 24 hours of incubation,protein expression of S416p-tau and S9p-GSK3β in HT22 cells was detected by immunoblotting,and protein expression of low-density lipoprotein receptor-related protein 1 and glycosylation end-product receptor in bEnd.3 cells was detected by immunoblotting. RESULTS AND CONCLUSION:In the elevated plus maze test,the time spent in the open arms(P<0.01)and the entries into open arms(P<0.05)in the mice of model control group were evidently lower than those in the control group,whereas those were obviously increased in the model intervention group compared with the model control group(P<0.05).Forced swimming test results showed that the immobile time exhibited a marked increase in the model control group compared with the control group(P<0.05),but it was significantly decreased in the model intervention group compared with the model control group(P<0.05).Hippocampal tissue mRNA sequencing showed that agomelatine enhanced the expression of low-density lipoprotein receptor-related protein 1 in the hippocampus of APP/PS1 mice.Western blot analysis revealed that the level of S416p-tau in HT22 cells was higher in the model group than the blank group(P<0.05),while it was markedly decreased in the experimental group compared with the model group(P<0.05);the level of S9p-GSK3β in HT22 cells was higher in the drug group than the blank group(P<0.05)as well as higher in the experimental group than the model group(P<0.05).Moreover,the expression of low-density lipoprotein receptor-related protein 1 in bEnd.3 cells was higher in the experimental group than the model group(P<0.05).To conclude,agomelatine can alleviate anxiety-and depression-like behaviors in Alzheimer's disease mice by promoting the clearance of β-amyloid and phosphorylated tau.
2.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
3.Effect of anterior segment parameters on the rotational stability of Toric intraocular lens
Gengqi* TIAN ; Su* XU ; Yuhang ZHANG ; Yizhuo HU ; Wei SI ; Yifan YANG ; Xintong LI ; Fengyan ZHANG
International Eye Science 2025;25(6):993-998
AIM: To explore the effects of preoperative anterior segment parameters on the rotational stability of Toric intraocular lens(Toric IOL).METHODS:Prospective study. A total of 41 cataract patients(54 eyes)with combined corneal regular astigmatism from March to December 2023 were included and treated with cataract phacoemulsification combined with plate loop Toric IOL implantation in the Department of Ophthalmology of the First Affiliated Hospital of Zhengzhou University. The rotation degree of Toric IOL and uncorrected distance visual acuity(UCDVA)were evaluated at 1 d, 2 wk, and 1 mo postoperatively, the corrected distance visual acuity(CDVA)was evaluated at 2 wk and 1 mo after surgery, and the decentration and tilt of the Toric IOL were assessed at 2 wk postoperatively.RESULTS:A total of 33 patients(40 eyes)were included in this study. The UCDVA(LogMAR)of 1 d, 2 wk and 1 mo postoperatively were 0.10(0.10, 0.30), 0.05(0, 0.10)and 0(0, 0.10), respectively, which was improved compared with the preoperative levels of [0.80(0.49, 1.00)](P<0.001). The CDVA(LogMAR)of 2 wk and 1 mo postoperatively were 0.05(0, 0.15)and 0(0, 0.138), respectively, which was improved compared with preoperative levels of [0.52(0.40, 0.80)](P<0.001). The residual astigmatism of 2 wk and 1 mo postoperatively were 0.625(0.25, 0.75)D and 0.50(0.25, 0.75)D, respectively, which was significantly reduced compared with preoperative astigmatism of [1.82(1.31, 2.59)D](P<0.001). The preoperative anterior segment length(ASL), and lens thickness(LT)were positively correlated with Toric IOL rotation degree at 1 d(rs=0.463, P=0.003; rs=0.340, P=0.032)and 2 wk(rs=0.520, P=0.001; rs=0.409, P=0.009)postoperatively. At 1 mo postoperatively, only ASL was positively correlated with Toric IOL rotation degree(rs=0.463, P=0.003). The results of linear regression analysis showed that preoperative ASL was a predictor of rotation degree at 1 d, 2 wk and 1 mo after surgery(F1 d=10.098, P1 d=0.003; F2 wk=16.915, P2 wk<0.001; F1 mo=10.957, P1 mo=0.002). The rotation degree of Toric IOL was positively correlated with lens decentration(rs=0.360, P=0.043).CONCLUSION:The early postoperative rotation of Toric IOL is positively correlated with ASL, and the rotation is also positively correlated with lens decentration.
4.PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in nasopharyngeal carcinoma
Ranran FENG ; Yilin GUO ; Meilin CHEN ; Ziying TIAN ; Yijun LIU ; Su JIANG ; Jieyu ZHOU ; Qingluan LIU ; Xiayu LI ; Wei XIONG ; Lei SHI ; Songqing FAN ; Guiyuan LI ; Wenling ZHANG
Journal of Pathology and Translational Medicine 2025;59(1):68-83
Background:
Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.
Methods:
We collected clinical samples of NPC to verify the relationship between PLUNC and PD-L1. PLUNC plasmid was transfected into NPC cells, and the variation of PD-L1 was verified by western blot and immunofluorescence. In NPC cells, we verified the relationship of PD-L1, activating transcription factor 3 (ATF3), and β-catenin by western blot and immunofluorescence. Later, we further verified that PLUNC regulates PD-L1 through β-catenin. Finally, the effect of PLUNC on β-catenin was verified by co-immunoprecipitation (Co-IP).
Results:
We found that PLUNC expression was lower in NPC tissues than in paracancer tissues. PD-L1 expression was opposite to that of PLUNC. Western blot and immunofluorescence showed that β-catenin could upregulate ATF3 and PD-L1, while PLUNC could downregulate ATF3/PD-L1 by inhibiting the expression of β-catenin. PLUNC inhibits the entry of β-catenin into the nucleus. Co-IP experiments demonstrated that PLUNC inhibited the interaction of DEAD-box helicase 17 (DDX17) and β-catenin.
Conclusions
PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in NPC.
5.PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in nasopharyngeal carcinoma
Ranran FENG ; Yilin GUO ; Meilin CHEN ; Ziying TIAN ; Yijun LIU ; Su JIANG ; Jieyu ZHOU ; Qingluan LIU ; Xiayu LI ; Wei XIONG ; Lei SHI ; Songqing FAN ; Guiyuan LI ; Wenling ZHANG
Journal of Pathology and Translational Medicine 2025;59(1):68-83
Background:
Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.
Methods:
We collected clinical samples of NPC to verify the relationship between PLUNC and PD-L1. PLUNC plasmid was transfected into NPC cells, and the variation of PD-L1 was verified by western blot and immunofluorescence. In NPC cells, we verified the relationship of PD-L1, activating transcription factor 3 (ATF3), and β-catenin by western blot and immunofluorescence. Later, we further verified that PLUNC regulates PD-L1 through β-catenin. Finally, the effect of PLUNC on β-catenin was verified by co-immunoprecipitation (Co-IP).
Results:
We found that PLUNC expression was lower in NPC tissues than in paracancer tissues. PD-L1 expression was opposite to that of PLUNC. Western blot and immunofluorescence showed that β-catenin could upregulate ATF3 and PD-L1, while PLUNC could downregulate ATF3/PD-L1 by inhibiting the expression of β-catenin. PLUNC inhibits the entry of β-catenin into the nucleus. Co-IP experiments demonstrated that PLUNC inhibited the interaction of DEAD-box helicase 17 (DDX17) and β-catenin.
Conclusions
PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in NPC.
6.PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in nasopharyngeal carcinoma
Ranran FENG ; Yilin GUO ; Meilin CHEN ; Ziying TIAN ; Yijun LIU ; Su JIANG ; Jieyu ZHOU ; Qingluan LIU ; Xiayu LI ; Wei XIONG ; Lei SHI ; Songqing FAN ; Guiyuan LI ; Wenling ZHANG
Journal of Pathology and Translational Medicine 2025;59(1):68-83
Background:
Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.
Methods:
We collected clinical samples of NPC to verify the relationship between PLUNC and PD-L1. PLUNC plasmid was transfected into NPC cells, and the variation of PD-L1 was verified by western blot and immunofluorescence. In NPC cells, we verified the relationship of PD-L1, activating transcription factor 3 (ATF3), and β-catenin by western blot and immunofluorescence. Later, we further verified that PLUNC regulates PD-L1 through β-catenin. Finally, the effect of PLUNC on β-catenin was verified by co-immunoprecipitation (Co-IP).
Results:
We found that PLUNC expression was lower in NPC tissues than in paracancer tissues. PD-L1 expression was opposite to that of PLUNC. Western blot and immunofluorescence showed that β-catenin could upregulate ATF3 and PD-L1, while PLUNC could downregulate ATF3/PD-L1 by inhibiting the expression of β-catenin. PLUNC inhibits the entry of β-catenin into the nucleus. Co-IP experiments demonstrated that PLUNC inhibited the interaction of DEAD-box helicase 17 (DDX17) and β-catenin.
Conclusions
PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in NPC.
7.Effect of electroacupuncture at "Hegu" (LI4) and "Taichong" (LR3) on DNA methylation of the SLC6A4 gene promoter in the hippocampus of depressed rats.
Xi ZHANG ; Shengyong SU ; Xin LI ; Tian WANG
Chinese Acupuncture & Moxibustion 2025;45(11):1609-1616
OBJECTIVE:
To observe the effect of electroacupuncture (EA) at "Hegu" (LI4) and "Taichong" (LR3) on DNA methylation of the solute carrier family 6 member 4 (SLC6A4) gene promoter region in the hippocampus of depressed rats, and to explore the potential antidepressant mechanism of EA.
METHODS:
Thirty male Sprague-Dawley rats were randomly divided into a blank group, a model group, a medication group, a 5-Azacytidine (5-AZA) group, and an EA group, 6 rats in each group. Depression models were established in the model group, the medication group, the 5-AZA group, and the EA group using chronic unpredictable mild stress (CUMS) combined with solitary housing. The medication group was treated with intragastric administration of fluoxetine hydrochloride capsules; the 5-AZA group was treated with intraperitoneal injection of 5-AZA; the EA group was treated with EA at bilateral "Hegu" (LI4) and "Taichong" (LR3), with disperse-dense wave, frequency of 2 Hz/100 Hz, and intensity of 1-1.2 mA, 20 min each session. All the treatment was given in three groups once daily for 21 consecutive days. Behavioral changes were evaluated by sucrose preference test, open field test, and novelty-suppressed feeding test. Serum levels of serotonin (5-HT), dopamine (DA), and norepinephrine (NE) were measured by ELISA. The expression of SLC6A4 and 5-HT1AR protein and mRNA in hippocampus was detected by Western blot and real-time quantitative PCR, respectively. DNA methylation status of the SLC6A4 promoter region in hippocampal tissue was analyzed by bisulfite sequencing PCR (BSP).
RESULTS:
Compared with the blank group, the model group showed decreased sucrose preference, reduced total locomotor distance, and prolonged latency to feeding (P<0.05), decreased serum 5-HT, DA, and NE levels (P<0.05), downregulated hippocampal SLC6A4 and 5-HT1AR protein and mRNA expression (P<0.05), and increased CpG site methylation rate of the SLC6A4 promoter region (P<0.05). Compared with the model group, the medication group, the 5-AZA group, and the EA group exhibited increased sucrose preference, increased total locomotor distance, shortened latency to feeding (P<0.05), elevated serum 5-HT, DA, and NE levels (P<0.05), upregulated hippocampal SLC6A4 and 5-HT1AR protein and mRNA expression (P<0.05), and reduced CpG site methylation rate of the SLC6A4 promoter (P<0.05). Compared with the medication group and the 5-AZA group, the EA group showed higher sucrose preference, greater total locomotor distance, shorter latency to feeding (P<0.05), and increased serum DA and NE levels (P<0.05).
CONCLUSION
EA could improve depressive behaviors in depressed rat models. The underlying mechanism may involve inhibition of SLC6A4 hypermethylation in the hippocampus on the serotonergic system, upregulation of SLC6A4 and 5-HT1AR protein and mRNA expression, and elevation of monoamine neurotransmitters such as 5-HT.
Animals
;
Electroacupuncture
;
Male
;
Hippocampus/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Acupuncture Points
;
DNA Methylation
;
Depression/metabolism*
;
Promoter Regions, Genetic
;
Serotonin Plasma Membrane Transport Proteins/metabolism*
;
Humans
9.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
10.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans

Result Analysis
Print
Save
E-mail