1.Analysis of red blood cell transfusion reactions in China from 2018 to 2023
Bo PAN ; Xiaoyu GUAN ; Jue WANG ; Yunlong PAN ; Liu HE ; Haixia XU ; Xin JI ; Li TIAN ; Ling LI ; Zhong LIU
Chinese Journal of Blood Transfusion 2025;38(5):704-710
Objective: To analyze the demographic characteristics of patients with red blood cell transfusion reactions, the usage of red blood cell preparations, and the differences in the composition ratio of adverse reactions based on multi-center data from the Haemovigilance Network, in order to reveal the clinical characteristics of red blood cell transfusion and its underlying issues. Methods: Clinical data of patients who experienced transfusion reactions after red blood cell transfusion in the Haemovigilance Network from 2018 to 2023 were collected. The demographic characteristics of patients who experienced transfusion reactions with different types of red blood cell preparations, the utilization of these preparations, and the differences of the composition ratios of transfusion reactions were analyzed. Count data were expressed as numbers (n) or percentages (%), and comparisons between groups were performed using the Chi-square test. Results: Red blood cell transfusion reactions were more common in females (53.56%), with the majority of patients aged 50-69 years (35.54%). The Han polulation accounted for the vast majority of patients (92.77%), and patients in the hematology and obstetrics/gynecology departments had a relatively high proportion of transfusion reactions (13.26% and 14.26%, respectively). Leukocyte-reduced red blood cells and suspended red blood cells were the most common types of transfusion reactions reported among red blood cell preparations. Allergic reactions and non-hemolytic febrile reactions were the most common transfusion reactions, and there were significant differences in the composition ratios of allergic reactions (χ
=869.89, P<0.05) and non-hemolytic febrile reactions (χ
=812.75, P<0.05) across various types of red blood cell preparations. Conclusion: There are differences in the demographic characteristics and composition ratio of transfusion reactions among different red blood cell preparations. The management of red blood cell transfusion reactions should be tailored to patient characteristics and conditions, and the selection and use of blood products should be optimized to reduce or avoid the occurrence of transfusion reactions, such as considering the use of washed red blood cells for patients with a history of transfusion allergies or those prone to allergies.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
7.Mechanisms and treatment of inflammation-cancer transformation in colon from perspective of cold and heat in complexity in integrative medicine.
Ning WANG ; Han-Zhou LI ; Tian-Ze PAN ; Wei-Bo WEN ; Ya-Lin LI ; Qian-Qian WAN ; Yu-Tong JIN ; Yu-Hong BIAN ; Huan-Tian CUI
China Journal of Chinese Materia Medica 2025;50(10):2605-2618
Colorectal cancer(CRC) is one of the most common malignant tumors worldwide, primarily originating from recurrent inflammatory bowel disease(IBD). Therefore, blocking the inflammation-cancer transformation in the colon has become a focus in the early prevention and treatment of CRC. The inflammation-cancer transformation in the colon involves multiple types of cells and complex pathological processes, including inflammatory responses and tumorigenesis. In this complex pathological process, immune cells(including non-specific and specific immune cells) and non-immune cells(such as tumor cells and fibroblasts) interact with each other, collectively promoting the progression of the disease. In traditional Chinese medicine(TCM), inflammation-cancer transformation in the colon belongs to the categories of dysentery and diarrhea, with the main pathogenesis being cold and heat in complexity. This paper first elaborates on the complex molecular mechanisms involved in the inflammation-cancer transformation process in the colon from the perspectives of inflammation, cancer, and their mutual influences. Subsequently, by comparing the pathogenic characteristics and clinical manifestations between inflammation-cancer transformation and the TCM pathogenesis of cold and heat in complexity, this paper explores the intrinsic connections between the two. Furthermore, based on the correlation between inflammation-cancer transformation in the colon and the TCM pathogenesis, this paper delves into the importance of the interaction between inflammation and cancer. Finally, it summarizes and discusses the clinical and basic research progress in the TCM intervention in the inflammation-cancer transformation process, providing a theoretical basis and treatment strategy for the treatment of CRC with integrated traditional Chinese and Western medicine.
Humans
;
Colon/pathology*
;
Integrative Medicine
;
Animals
;
Cold Temperature
;
Cell Transformation, Neoplastic/drug effects*
;
Medicine, Chinese Traditional
;
Hot Temperature
;
Inflammation
;
Drugs, Chinese Herbal/therapeutic use*
;
Colonic Neoplasms/drug therapy*
8.Laboratory Diagnosis and Molecular Epidemiological Characterization of the First Imported Case of Lassa Fever in China.
Yu Liang FENG ; Wei LI ; Ming Feng JIANG ; Hong Rong ZHONG ; Wei WU ; Lyu Bo TIAN ; Guo CHEN ; Zhen Hua CHEN ; Can LUO ; Rong Mei YUAN ; Xing Yu ZHOU ; Jian Dong LI ; Xiao Rong YANG ; Ming PAN
Biomedical and Environmental Sciences 2025;38(3):279-289
OBJECTIVE:
This study reports the first imported case of Lassa fever (LF) in China. Laboratory detection and molecular epidemiological analysis of the Lassa virus (LASV) from this case offer valuable insights for the prevention and control of LF.
METHODS:
Samples of cerebrospinal fluid (CSF), blood, urine, saliva, and environmental materials were collected from the patient and their close contacts for LASV nucleotide detection. Whole-genome sequencing was performed on positive samples to analyze the genetic characteristics of the virus.
RESULTS:
LASV was detected in the patient's CSF, blood, and urine, while all samples from close contacts and the environment tested negative. The virus belongs to the lineage IV strain and shares the highest homology with strains from Sierra Leone. The variability in the glycoprotein complex (GPC) among different strains ranged from 3.9% to 15.1%, higher than previously reported for the seven known lineages. Amino acid mutation analysis revealed multiple mutations within the GPC immunogenic epitopes, increasing strain diversity and potentially impacting immune response.
CONCLUSION
The case was confirmed through nucleotide detection, with no evidence of secondary transmission or viral spread. The LASV strain identified belongs to lineage IV, with broader GPC variability than previously reported. Mutations in the immune-related sites of GPC may affect immune responses, necessitating heightened vigilance regarding the virus.
Humans
;
China/epidemiology*
;
Genome, Viral
;
Lassa Fever/virology*
;
Lassa virus/classification*
;
Molecular Epidemiology
;
Phylogeny
9.Associations of Exposure to Typical Environmental Organic Pollutants with Cardiopulmonary Health and the Mediating Role of Oxidative Stress: A Randomized Crossover Study.
Ning GAO ; Bin WANG ; Ran ZHAO ; Han ZHANG ; Xiao Qian JIA ; Tian Xiang WU ; Meng Yuan REN ; Lu ZHAO ; Jia Zhang SHI ; Jing HUANG ; Shao Wei WU ; Guo Feng SHEN ; Bo PAN ; Ming Liang FANG
Biomedical and Environmental Sciences 2025;38(11):1388-1403
OBJECTIVE:
The study aim was to investigate the effects of exposure to multiple environmental organic pollutants on cardiopulmonary health with a focus on the potential mediating role of oxidative stress.
METHODS:
A repeated-measures randomized crossover study involving healthy college students in Beijing was conducted. Biological samples, including morning urine and venous blood, were collected to measure concentrations of 29 typical organic pollutants, including hydroxy polycyclic aromatic hydrocarbons (OH-PAHs), bisphenol A and its substitutes, phthalates and their metabolites, parabens, and five biomarkers of oxidative stress. Health assessments included blood pressure measurements and lung function indicators.
RESULTS:
Urinary concentrations of 2-hydroxyphenanthrene (2-OH-PHE) ( β = 4.35% [95% confidence interval ( CI): 0.85%, 7.97%]), 3-hydroxyphenanthrene ( β = 3.44% [95% CI: 0.19%, 6.79%]), and 4-hydroxyphenanthrene (4-OH-PHE) ( β = 5.78% [95% CI: 1.27%, 10.5%]) were significantly and positively associated with systolic blood pressure. Exposures to 1-hydroxypyrene (1-OH-PYR) ( β = 3.05% [95% CI: -4.66%, -1.41%]), 2-OH-PHE ( β = 2.68% [95% CI: -4%, -1.34%]), and 4-OH-PHE ( β = 3% [95% CI: -4.68%, -1.29%]) were negatively associated with the ratio of forced expiratory volume in the first second to forced vital capacity. These findings highlight the adverse effects of exposure to multiple pollutants on cardiopulmonary health. Biomarkers of oxidative stress, including 8-hydroxy-2'-deoxyguanosine and extracellular superoxide dismutase, mediated the effects of multiple OH-PAHs on blood pressure and lung function.
CONCLUSION
Exposure to multiple organic pollutants can adversely affect cardiopulmonary health. Oxidative stress is a key mediator of the effects of OH-PAHs on blood pressure and lung function.
Humans
;
Oxidative Stress/drug effects*
;
Male
;
Cross-Over Studies
;
Female
;
Young Adult
;
Environmental Pollutants/toxicity*
;
Environmental Exposure/adverse effects*
;
Biomarkers/blood*
;
Adult
;
Blood Pressure/drug effects*
;
Polycyclic Aromatic Hydrocarbons/urine*
;
Beijing
10.Interpretation of the 2024 American Heart Association Scientific Statement: evaluation and management of chronic heart failure in children and adolescents with congenital heart disease
Yuxing YUAN ; Jinpeng ZHANG ; Huichao SUN ; Bo PAN ; Jie TIAN
Chinese Journal of Applied Clinical Pediatrics 2024;39(11):824-830
Congenital heart disease (CHD) is one of the leading causes of heart failure (HF) in pediatrics.In 2024, the American Heart Association, based on existing knowledge and research findings, issued its first scientific statement on the assessment and management of HF in children and adolescents with CHD.The statement emphasizes the current lack of understanding of the epidemiology, pathophysiology, staging, and outcomes of chronic HF in pediatrics with CHD, and calls for the development of standardized definitions, monitoring protocols, and treatment strategies to improve the clinical outcomes and quality of life for this population.This article interprets the main content of the statement, aiming to provide reference and guidance for the accurate assessment and comprehensive management of chronic HF in children and adolescents with CHD.

Result Analysis
Print
Save
E-mail