1.Mechanism of Action of Guishenwan in Treatment of Ovarian Insufficiency Diseases: A Review
Yao CHEN ; Sainan TIAN ; Bin'an WANG ; Shengyu WANG ; Wen'e LIU ; Lei LEI ; Li TANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):317-324
Guishenwan (GSW), originating from Jingyue Quanshu (Zhang Jingyue's Complete Works), is a classic traditional Chinese medicine (TCM) formula with a history of over 400 years. Designed for kidney essence deficiency syndrome, it is clinically applied to treat diseases associated with essence-blood deficiency, such as ovarian insufficiency diseases in women, oligospermia-induced infertility in men, and lumbar disc herniation. Numerous studies have confirmed its significant efficacy and advantages in managing ovarian insufficiency diseases, including diminished ovarian reserve (DOR), premature ovarian insufficiency (POI), and premature ovarian failure (POF). According to recent literature, the therapeutic mechanisms of GSW in treating ovarian insufficiency diseases involve regulating the hypothalamic-pituitary-ovarian axis (HPOA) function, ameliorating reproductive endocrine disorders, improving ovarian function, modulating relevant signaling pathways, and exerting immunoregulatory and anti-inflammatory effects. A review of GSW in clinical treatment revealed that clinical applications of GSW, particularly in combination with Western medicine, not only alleviate symptoms but also compensate for the limitations of hormone replacement therapy, thereby reducing recurrence, minimizing adverse reactions, and enhancing safety. This review aims to provide a scientific basis for the rational clinical use of GSW in ovarian insufficiency diseases, offer innovative TCM strategies for developing novel ovarian-protective drugs, promote the integration of TCM and Western medicine in reproductive medicine, and ultimately contribute a Chinese approach to global management of ovarian insufficiency diseases.
2.Ameliorative Effect of Wendantang Combined with Danshenyin and Dushentang on Ischemic Heart Disease with Phlegm-stasis Syndrome in Mice Based on Circulating Monocytes
Fenghe YANG ; Ziqi TIAN ; Zhiqian SONG ; Shitao PENG ; Wenjie LU ; Tao LIN ; Chun WANG ; Zhangchi NING
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):22-32
ObjectiveTo investigate the ameliorative effect of Wendantang combined with Danshenyin and Dushentang (WDD) on mice with ischemic heart disease (IHD) presenting phlegm-stasis syndrome based on the inflammatory phenotype and differentiation of circulating monocytes. MethodsA model of IHD with phlegm-stasis syndrome was established using left anterior descending coronary artery ligation supplemented with a high-fat diet. Eighty model mice were randomly assigned to the model group, WDD low-dose group (WDD-L), WDD medium-dose group (WDD-M), WDD high-dose group (WDD-H), and atorvastatin calcium tablet group, with 16 mice in each group. An additional 16 C57BL/6J mice were designated as the sham-operation group. The WDD groups received intragastric administration at doses of 8.91, 17.81, 35.62 g·kg-1, and the atorvastatin calcium tablet group received the corresponding drug at 1.3 mg·kg-1, twice daily. The sham-operation and model groups were given the same volume of pure water by gavage each day. After 5 consecutive weeks of administration, the cardiac index was calculated. Cardiac function was assessed by echocardiography. Myocardial histopathology was examined by hematoxylin-eosin (HE) staining. Serum N-terminal pro-B-type natriuretic peptide (pro-BNP) content was measured by enzyme-linked immunosorbent assay (ELISA). Hemorheological parameters were analyzed using an automated hemorheology analyzer. Serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were determined using an automated biochemical analyzer. Changes in circulating monocytes were detected by flow cytometry. Mouse bone marrow mononuclear cells were isolated in vitro and divided into blank group, model serum group, WDD-L drug-containing serum group, WDD-M drug-containing serum group, and WDD-H drug-containing serum group. CD36 expression and macrophage differentiation in each group were assessed by flow cytometry. The mechanism by which WDD mediates circulating monocyte differentiation was further explored using CD36 knockdown/overexpression RAW264.7 cell lines. ResultsCompared with the sham-operation group, the model group showed a significantly increased cardiac index (P0.01), significantly decreased fractional shortening (FS) (P0.01), and significantly increased left ventricular end-diastolic internal diameter (LVDD) and left ventricular end-systolic internal diameter (LVDS) (P0.01). Cardiomyocytes exhibited marked deformation and necrosis with inflammatory cell infiltration. Serum pro-BNP levels were significantly elevated (P0.01), and whole-blood viscosity (BV) at high, medium, and low shear rates was significantly increased (P0.01). Compared with the model group, the WDD groups showed significantly reduced cardiac index (P0.05, P0.01), significantly increased FS (P0.05, P0.01), significantly decreased LVDD and LVDS (P0.01), markedly improved cardiomyocyte morphology, significantly reduced inflammatory infiltration, significantly decreased serum pro-BNP levels (P0.01), and significantly decreased BV at high, medium, and low shear rates (P0.01), with the most pronounced improvement observed in the WDD-M group. Compared with the sham-operation group, TC, TG, and LDL levels were significantly increased in the model group (P0.05, P0.01), while HDL levels were significantly decreased (P0.05). After WDD-H treatment, TC, TG, and LDL levels were significantly reduced and HDL levels were significantly increased in mice (P0.05, P0.01). Compared with the sham-operation group, classical monocytes in blood and bone marrow and intermediate monocytes in blood were significantly increased in the model group (P0.01), whereas intermediate monocytes in bone marrow and non-classical monocytes in blood were significantly decreased (P0.01). After WDD administration, all circulating monocyte subsets in blood and bone marrow were significantly alleviated (P0.05, P0.01), with the WDD-M group showing the optimal effect. In vitro, compared with the blank group, CD36 expression on bone marrow monocytes and the proportion of differentiated macrophages were significantly increased in the model serum group (P0.01), and CD36 expression was significantly upregulated on RAW264.7 cells (P0.01). Compared with the model serum group, all drug-containing serum groups exhibited significantly reduced CD36 expression on bone marrow monocytes and significantly reduced macrophage differentiation (P0.01). WDD downregulated CD36 expression in both CD36 knockdown and overexpression RAW264.7 cell lines (P0.05, P0.01), with the strongest regulatory effect observed in the WDD-M drug-containing serum group. ConclusionWDD can significantly improve the manifestations of phlegm-stasis syndrome in IHD mice and reduce the proportion of classical circulating monocytes. Its mechanism may be related to the inhibition of CD36 expression on classical circulating monocytes.
3.Ameliorative Effect of Wendantang Combined with Danshenyin and Dushentang on Ischemic Heart Disease with Phlegm-stasis Syndrome in Mice Based on Circulating Monocytes
Fenghe YANG ; Ziqi TIAN ; Zhiqian SONG ; Shitao PENG ; Wenjie LU ; Tao LIN ; Chun WANG ; Zhangchi NING
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):22-32
ObjectiveTo investigate the ameliorative effect of Wendantang combined with Danshenyin and Dushentang (WDD) on mice with ischemic heart disease (IHD) presenting phlegm-stasis syndrome based on the inflammatory phenotype and differentiation of circulating monocytes. MethodsA model of IHD with phlegm-stasis syndrome was established using left anterior descending coronary artery ligation supplemented with a high-fat diet. Eighty model mice were randomly assigned to the model group, WDD low-dose group (WDD-L), WDD medium-dose group (WDD-M), WDD high-dose group (WDD-H), and atorvastatin calcium tablet group, with 16 mice in each group. An additional 16 C57BL/6J mice were designated as the sham-operation group. The WDD groups received intragastric administration at doses of 8.91, 17.81, 35.62 g·kg-1, and the atorvastatin calcium tablet group received the corresponding drug at 1.3 mg·kg-1, twice daily. The sham-operation and model groups were given the same volume of pure water by gavage each day. After 5 consecutive weeks of administration, the cardiac index was calculated. Cardiac function was assessed by echocardiography. Myocardial histopathology was examined by hematoxylin-eosin (HE) staining. Serum N-terminal pro-B-type natriuretic peptide (pro-BNP) content was measured by enzyme-linked immunosorbent assay (ELISA). Hemorheological parameters were analyzed using an automated hemorheology analyzer. Serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were determined using an automated biochemical analyzer. Changes in circulating monocytes were detected by flow cytometry. Mouse bone marrow mononuclear cells were isolated in vitro and divided into blank group, model serum group, WDD-L drug-containing serum group, WDD-M drug-containing serum group, and WDD-H drug-containing serum group. CD36 expression and macrophage differentiation in each group were assessed by flow cytometry. The mechanism by which WDD mediates circulating monocyte differentiation was further explored using CD36 knockdown/overexpression RAW264.7 cell lines. ResultsCompared with the sham-operation group, the model group showed a significantly increased cardiac index (P<0.01), significantly decreased fractional shortening (FS) (P<0.01), and significantly increased left ventricular end-diastolic internal diameter (LVDD) and left ventricular end-systolic internal diameter (LVDS) (P<0.01). Cardiomyocytes exhibited marked deformation and necrosis with inflammatory cell infiltration. Serum pro-BNP levels were significantly elevated (P<0.01), and whole-blood viscosity (BV) at high, medium, and low shear rates was significantly increased (P<0.01). Compared with the model group, the WDD groups showed significantly reduced cardiac index (P<0.05, P<0.01), significantly increased FS (P<0.05, P<0.01), significantly decreased LVDD and LVDS (P<0.01), markedly improved cardiomyocyte morphology, significantly reduced inflammatory infiltration, significantly decreased serum pro-BNP levels (P<0.01), and significantly decreased BV at high, medium, and low shear rates (P<0.01), with the most pronounced improvement observed in the WDD-M group. Compared with the sham-operation group, TC, TG, and LDL levels were significantly increased in the model group (P<0.05, P<0.01), while HDL levels were significantly decreased (P<0.05). After WDD-H treatment, TC, TG, and LDL levels were significantly reduced and HDL levels were significantly increased in mice (P<0.05, P<0.01). Compared with the sham-operation group, classical monocytes in blood and bone marrow and intermediate monocytes in blood were significantly increased in the model group (P<0.01), whereas intermediate monocytes in bone marrow and non-classical monocytes in blood were significantly decreased (P<0.01). After WDD administration, all circulating monocyte subsets in blood and bone marrow were significantly alleviated (P<0.05, P<0.01), with the WDD-M group showing the optimal effect. In vitro, compared with the blank group, CD36 expression on bone marrow monocytes and the proportion of differentiated macrophages were significantly increased in the model serum group (P<0.01), and CD36 expression was significantly upregulated on RAW264.7 cells (P<0.01). Compared with the model serum group, all drug-containing serum groups exhibited significantly reduced CD36 expression on bone marrow monocytes and significantly reduced macrophage differentiation (P<0.01). WDD downregulated CD36 expression in both CD36 knockdown and overexpression RAW264.7 cell lines (P<0.05, P<0.01), with the strongest regulatory effect observed in the WDD-M drug-containing serum group. ConclusionWDD can significantly improve the manifestations of phlegm-stasis syndrome in IHD mice and reduce the proportion of classical circulating monocytes. Its mechanism may be related to the inhibition of CD36 expression on classical circulating monocytes.
4.Pathogenic Mechanisms of Spleen Deficiency-Phlegm Dampness in Obesity and Traditional Chinese Medicine Prevention and Treatment Strategies:from the Perspective of Immune Inflammation
Yumei LI ; Peng XU ; Xiaowan WANG ; Shudong CHEN ; Le YANG ; Lihua HUANG ; Chuang LI ; Qinchi HE ; Xiangxi ZENG ; Juanjuan WANG ; Wei MAO ; Ruimin TIAN
Journal of Traditional Chinese Medicine 2026;67(1):31-37
Based on spleen deficiency-phlegm dampness as the core pathogenesis of obesity, and integrating recent advances in modern medicine regarding the key role of immune inflammation in obesity, this paper proposes a multidimensional pathogenic network of "obesity-spleen deficiency-phlegm dampness-immune imbalance". Various traditional Chinese medicine (TCM) herbs that strengthen the spleen, regulate qi, and resolve phlegm and dampness can treat obesity by improving spleen-stomach transport and transformation, promoting water-damp metabolism, and regulating immune homeostasis. This highlights immune inflammation as an important entry point to elucidate the TCM concepts of "spleen deficiency-phlegm dampness" and the therapeutic principle of "strengthening the spleen and eliminating dampness to treat obesity". By systematically analyzing the intrinsic connection between "spleen deficiency generating dampness, internal accumulation of phlegm dampness" and immune dysregulation in obesity, this paper aims to provide theoretical support for TCM treatment of obesity based on dampness.
5.Mechanism of Yishen Huoxue Tongqiao Formula in Improving Unilateral Vestibular Labyrinth Destruction by Regulating Metabolism-neuroplasticity
Yu TIAN ; Hui LENG ; Rupeng QU ; Xianglong HAO ; Aiping WANG ; Lei SHI ; Zhongyuan QU ; Ye DONG ; Xiande MA ; Yangling HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):54-64
ObjectiveThis study aims to explore the mechanism by which Yishen Huoxue Tongqiao Formula improves metabolism-neuroplasticity and treats unilateral vestibular labyrinth destruction by regulating the metabolic balance of glutamate (Glu)/γ-aminobutyric acid (GABA). Methods48 Sprague-Dawley (SD) adult rats were randomly divided into the sham operation group, model group, Yishen Huoxue Tongqiao Formula groups with low, medium, and high doses (9.20, 18.39, 36.78 g·kg-1), and betahistine group (1.62 mg·kg-1). A unilateral vestibular labyrinth destruction (vestibular dysfunction) model was established by intratympanic injection of chloroform into the right ear, while the control group received intratympanic injection of normal saline. Drugs were administered once daily for seven consecutive days. During the period, behavioral tests were performed to evaluate the behaviors of rats after unilateral vestibular labyrinth destruction. Hematoxylin-eosin (HE) staining and Nissl staining were used to observe the neuronal morphology in the medial vestibular nucleus. Golgi staining was employed to assess the number of dendritic spines of neurons in the medial vestibular nucleus. Ultra-performance liquid chromatography-tandem mass spectrometry (LC-ESI-MS/MS) was utilized to detect Glu/GABA. Immunofluorescence and immunohistochemistry were used to detect the expressions of neuronal nuclei (NeuN), growth-associated protein 43 (GAP-43), and glial fibrillary acidic protein (GFAP). Western blot and real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) were applied to determine the expressions of glutamate-immunoreactive (Glu-IR), GABA, GFAP, postsynaptic density protein 95 (PSD-95), and GAP-43. ResultsCompared with the sham operation group, the model group presented with head deviation, balance disorder, increased tail suspension score, nuclear consolidation of medial vestibular nerve neurons, and decreased Nissl bodies (P<0.01). The number of dendritic spines in neurons and NeuN-positive cells decreased. The content of Glu decreased. The content of GABA increased (Glu/GABA decreased). The expression of GAP-43 was down-regulated, and GFAP was up-regulated (P<0.05, P<0.01). The expressions of Glu-IR, PSD-95, and GAP-43 proteins, as well as Glu-IR mRNA decreased, while the expressions of GABA and GFAP proteins and mRNA increased (P<0.05, P<0.01). Compared with those in the model group, the head deviation, imbalanced behavior, and tail suspension scores in each treatment group decreased, with alleviated neuronal injury and recovered Nissl bodies (P<0.01). The number of dendritic spines of neurons increased, and the number of NeuN-positive cells rebounded. The content of Glu increased, and the content of GABA decreased (Glu/GABA increased). GFAP was down-regulated, and GAP-43 was up-regulated (P<0.05, P<0.01). The expressions of Glu-IR, PMD-95, and GAP-43 proteins, as well as Glu-IR mRNA increased, while the expressions of GABA and GFAP proteins and mRNA decreased. The effect was more significant in the high-dose group (P<0.01). ConclusionThe Yishen Huoxue Tongqiao Formula can alleviate vestibular dysfunction, and its mechanism may be associated with regulating the metabolic balance of Glu/GABA, mitigating neural damage, improving synaptic plasticity (promoting GAP-43 expression and inhibiting GFAP expression), and facilitating vestibular compensation.
6.Treatment Principles and Paradigm of Diabetic Microvascular Complications Responding Specifically to Traditional Chinese Medicine
Anzhu WANG ; Xing HANG ; Lili ZHANG ; Xiaorong ZHU ; Dantao PENG ; Ying FAN ; Min ZHANG ; Wenliang LYU ; Guoliang ZHANG ; Xiai WU ; Jia MI ; Jiaxing TIAN ; Wei ZHANG ; Han WANG ; Yuan XU ; .LI PINGPING ; Zhenyu WANG ; Ying ZHANG ; Dongmei SUN ; Yi HE ; Mei MO ; Xiaoxiao ZHANG ; Linhua ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):272-279
To explore the advantages of traditional Chinese medicine (TCM) and integrative TCM-Western medicine approaches in the treatment of diabetic microvascular complications (DMC), refine key pathophysiological insights and treatment principles, and promote academic innovation and strategic research planning in the prevention and treatment of DMC. The 38th session of the Expert Salon on Diseases Responding Specifically to Traditional Chinese Medicine, hosted by the China Association of Chinese Medicine, was held in Beijing, 2024. Experts in TCM, Western medicine, and interdisciplinary fields convened to conduct a systematic discussion on the pathogenesis, diagnostic and treatment challenges, and mechanism research related to DMC, ultimately forming a consensus on key directions. Four major research recommendations were proposed. The first is addressing clinical bottlenecks in the prevention and control of DMC by optimizing TCM-based evidence evaluation systems. The second is refining TCM core pathogenesis across DMC stages and establishing corresponding "disease-pattern-time" framework. The third is innovating mechanism research strategies to facilitate a shift from holistic regulation to targeted intervention in TCM. The fourth is advancing interdisciplinary collaboration to enhance the role of TCM in new drug development, research prioritization, and guideline formulation. TCM and integrative approaches offer distinct advantages in managing DMC. With a focus on the diseases responding specifically to TCM, strengthening evidence-based support and mechanism interpretation and promoting the integration of clinical care and research innovation will provide strong momentum for the modernization of TCM and the advancement of national health strategies.
7.Risk factors for concurrent hepatic hydrothorax before intervention in primary liver cancer and construction of a nomogram prediction model
Yuanzhen WANG ; Renhai TIAN ; Yingyuan ZHANG ; Danqing XU ; Lixian CHANG ; Chunyun LIU ; Li LIU
Journal of Clinical Hepatology 2025;41(1):75-83
ObjectiveTo investigate the influencing factors for hepatic hydrothorax (HH) before intervention for primary hepatic carcinoma (PHC), and to construct and assess the nomogram risk prediction model. MethodsA retrospective analysis was performed for the clinical data of 353 hospitalized patients who attended the Third People’s Hospital of Kunming for the first time from October 2012 to October 2021 and there diagnosed with PHC, and according to the presence or absence of HH, they were divided into HH group with 153 patients and non-HH group with 200 patients. General data and the data of initial clinical testing after admission were collected from all PHC patients. The independent-samples t test was used for comparison of normally distributed continuous data between two groups, and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups; the chi-square test or the Fisher’s exact test was used for comparison of categorical data between groups. After the multicollinearity test was performed for the variables with statistical significance determined by the univariate analysis, the multivariate Logistic regression analysis was used to identify independent influencing factors. The “rms” software package was used to construct a nomogram risk prediction model, and the Hosmer-Lemeshow test and the receiver operating characteristic (ROC) curve were used to assess the risk prediction model; the “Calibration Curves” software package was used to plot the calibration curve, and the “rmda” software package was used to plot the clinical decision curve and the clinical impact curve. ResultsAmong the 353 patients with PHC, there were 153 patients with HH, with a prevalence rate of 43.34%. Child-Pugh class B (odds ratio [OR]=2.652, 95% confidence interval [CI]: 1.050 — 6.698, P=0.039), Child-Pugh class C (OR=7.963, 95%CI: 1.046 — 60.632, P=0.045), total protein (OR=0.947, 95%CI: 0.914 — 0.981, P=0.003), high-sensitivity C-reactive protein (OR=1.007, 95%CI: 1.001 — 1.014, P=0.025), and interleukin-2 (OR=0.801, 95%CI: 0.653 — 0.981, P=0.032) were independent influencing factors for HH before PHC intervention, and a nomogram risk prediction model was established based on these factors. The Hosmer-Lemeshow test showed that the model had a good degree of fitting (χ2=5.006, P=0.757), with an area under the ROC curve of 0.752 (95%CI: 0.701 — 0.803), a sensitivity of 78.40%, and a specificity of 63.50%. The calibration curve showed that the model had good consistency in predicting HH before PHC intervention, and the clinical decision curve and the clinical impact curve showed that the model had good clinical practicability within a certain threshold range. ConclusionChild-Pugh class, total protein, interleukin-2, and high-sensitivity C-reactive protein are independent influencing factors for developing HH before PHC intervention, and the nomogram model established based on these factors can effectively predict the risk of developing HH.
8.Time-series study on the impact of atmospheric fine particulate matter PM2.5 on short-term pulmonary function in elderly patients with chronic obstructive pulmonary disease in Taiyuan City
Yingying SHAO ; Chen WANG ; Anfeng CUI ; Haodong WANG ; Tian-e LUO
Journal of Public Health and Preventive Medicine 2025;36(1):18-22
Objective To explore the effect of fine particulate matter (PM2.5) in Taiyuan City on short-term pulmonary function in elderly patients with chronic obstructive pulmonary disease (COPD). Methods Among the 1 015 elderly COPD patients admitted to the respiratory departments of five general hospitals in Taiyuan City from December 2021 to December 2023 were retrospectively selected for research; medical records, air pollutant data and meteorological data were analyzed; the relationship between PM2.5 and lung function indicators and air pollutants was analyzed; the impact of PM2.5 on lung function and its lag effect were analyzed; the cumulative effect of PM2.5 concentration on the risk of pulmonary ventilation dysfunction was analyzed; The influence of gender and age on the relationship between PM2.5 and patients ' short-term pulmonary function was analyzed. Results PM2.5, respirable particulate matter (PM10), sulfur dioxide (SO2), carbon monoxide (CO) were negatively correlated with average temperature and average humidity (P<0.05) ; Nitrogen dioxide (NO2), ozone (O3) were negatively correlated with average temperature (P<0.05) ; There was a positive correlation among PM2.5, PM10, SO2, CO, NO2, and O3 (P<0.05) ; Elevated PM2.5 is an independent risk factor for decreased lung function and increased air pollutants (P<0.05) ; At lag0 and lag1, PM2.5 concentration was negatively correlated with lung function in a dose-response manner (P<0.05); daily average PM2.5 concentration at lag0 was a dangerous effect (P<0.05). Conclusion The impact of PM2.5 concentration on lung function has a certain time lag. An increase in PM2.5 concentrations can lead to a decline in lung function.
9.Discussion on the Treatment of Insomnia from Liver Based on the Theory "Liver Governs Wei Qi (Defensive Qi)"
Zirong LI ; Miaoran WANG ; Yufei WU ; Tian NI ; Xianbei WANG ; Hongjin DU ; Jiwei ZHANG ; Qiuyan LI
Journal of Traditional Chinese Medicine 2025;66(4):411-415
Psychological factors have become significant contributors to the onset and progression of insomnia. This article explored the treatment of insomnia from the perspective of “liver governs wei qi (defensive qi)”. The concept of “liver governs wei qi (defensive qi)” is summarized in three aspects, firstly, the liver assists the spleen and stomach in transformation and transportation, governing the generation of wei qi; secondly, the liver aids lung qi diffusion and dispersion, governing the distribution of wei qi; thirdly, the liver regulates circadian rhythms, governing the circulation of wei qi. It is proposed that the clinical treatment of insomnia should focus on the following methods: for regulating the liver to harmonize the five viscera, and facilitate the circulation of wei qi, medicinals entering the liver channel include Chaihu (Bupleuri radix), Baishao (Paeoniae Radix Alba), Zhizi (Gardeniae Fructus), and Suanzaoren (Ziziphi Spinosae Semen) could be commonly used; for nourishing the liver, the treatment should align with the day-night rhythm, and herbs such as Baihe (Lilium), Hehuan (Albizia julibrissin), and Yejiaoteng (Polygoni multiflori caulis) are commonly used; for soothing the liver and address both mental and physical health to calm wei qi, treatment should advocate verbal counseling, psychological regulation, and health education. Ultimately, this treatment approach can free liver qi to flow, soothe qi movement, restore the motion of wei qi, regulate during day and night, balance yin and yang, and resolve insomnia effectively.
10.Mechanism of Xuefu Zhuyutang in Intervening in Ferroptosis in Rats with Coronary Heart Disease with Blood Stasis Syndrome Based on ACSL4 Signalling Pathway
Yi LIU ; Yang YANG ; Chang SU ; Peng TIAN ; Mingyun WANG ; Ruqian ZHONG ; Xuejiao XIE ; Qing YAN ; Qinghua PENG ; Qiuyan ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):27-38
ObjectiveTo investigate the mechanism of ferroptosis mediated by long-chain acyl-CoA synthetase 4 (ACSL4) signalling pathway in rats with coronary heart disease with blood stasis syndrome and the intervention effect of Xuefu Zhuyutang. MethodsSPF male SD rats were randomly divided into normal group, sham-operation group, model group, trimetazidine group (5.4 mg·kg-1), low-, medium-, and high-dose group (3.51, 7.02,14.04 g·kg-1) of Xuefu Zhuyutang. The coronary artery left anterior descending ligation method was used to prepare a model of coronary heart disease with blood stasis syndrome, and continuous treatment for 7 d was conducted, while the sham-operation group was only threaded and not ligated. The general macroscopic symptoms of the rats were observed, and indicators such as electrocardiogram, echocardiography, and blood rheology were detected. The pathological morphology of myocardial tissue was observed by hematoxylin-eosin (HE) staining, and the changes in mitochondria in myocardial tissue were observed by transmission electron microscopy. The level of iron deposition in myocardial tissue was observed by Prussian blue staining. The levels of 12-hydroxyeicosatetraenoic acid (12-HETE) and 15-HETE were detected in serum by enzyme-linked immunosorbent assay. A biochemical colourimetric assay was used to detect the levels of Fe2+, lipid peroxidation (LPO), glutathione (GSH), and T-GSH/glutathione disulfide (GSSG) in myocardial tissue. DCFH-DA fluorescence quantitative assay was employed to detect the levels of reactive oxygen species (ROS). Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was adopted to detect the protein and mRNA expressions of glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), ACSL4, and ly-sophosphatidylcholine acyltransferase3 (LPCAT3) in myocardial tissue. ResultsCompared with those in the normal group, the rats in the model group were poor in general macroscopic symptoms. The electrocardiogram showed widened QRS wave amplitude and increased voltage, bow-back elevation of the ST segments, elevated T waves, J-point elevation, and accelerated heart rate. Echocardiography showed a significant reduction in left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS) (P<0.01). Blood rheology showed that the viscosity of the whole blood (low, medium, and high rate of shear) was significantly increased (P<0.01). HE staining showed an abnormal structure of myocardial tissue. There was a large area of myocardial necrosis and inflammatory cell infiltration and a large number of connective tissue between myocardial fibers. Transmission electron microscopy showed that the mitochondria were severely atrophy or swelling. The cristae were reduced or even broken, and the matrix was flocculent or even vacuolated. Prussian blue staining showed that there were a large number of iron-containing particles, and the iron deposition was obvious. The content of 12-HETE and 15-HETE in the serum was significantly increased (P<0.01). The content of Fe2+, LPO, and ROS in myocardial tissue was significantly increased (P<0.01). The content of GSH was significantly decreased (P<0.01), and T-GSH/GSSG was decreased (P<0.01). The protein and mRNA expressions of GPX4 and FTH1 in myocardial tissue were both significantly decreased (P<0.05, P<0.01), while those of ACSL4 and LPCAT3 increased significantly (P<0.01). Compared with the model group, the general macroscopic symptoms and electrocardiogram results of rats in low-, medium- and high-dose groups of Xuefu Zhuyutang were alleviated, and the differences in LVEF/LVFS ratios were all significantly increased (P<0.05, P<0.01). The differences in whole-blood viscosity (low, medium, and high rate of shear) were all significantly decreased (P<0.01). The results of HE staining and transmission electron microscopy showed that the morphology, structure, and mitochondria of cardiomyocytes were improved. The content of 12-HETE and 15-HETE in serum was reduced to different degrees in low-, medium-, and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01). The content of Fe2+, LPO, and ROS was significantly reduced in the medium- and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01), and the content of GSH and T-GSH/GSSG was significantly increased (P<0.05, P<0.01). The protein and mRNA expressions of GPX4 and FTH1 were significantly increased to varying degrees in the medium- and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01), and ACSL4 and LPCAT3 were decreased to different degrees in the low-, medium-, and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01). ConclusionXuefu Zhuyutang can regulate iron metabolism and anti-lipid oxidation reaction to mediate ferroptosis through the ACSL4 signalling pathway, thus exerting a protective effect on rats with coronary heart disease with blood stasis syndrome.


Result Analysis
Print
Save
E-mail