1.Gradient artificial bone repair scaffold regulates skeletal system tissue repair and regeneration
Yu ZHANG ; Ruian XU ; Lei FANG ; Longfei LI ; Shuyan LIU ; Lingxue DING ; Yuexi WANG ; Ziyan GUO ; Feng TIAN ; Jiajia XUE
Chinese Journal of Tissue Engineering Research 2025;29(4):846-855
BACKGROUND:Gradient artificial bone repair scaffolds can mimic unique anatomical features in musculoskeletal tissues,showing great potential for repairing injured musculoskeletal tissues. OBJECTIVE:To review the latest research advances in gradient artificial bone repair scaffolds for tissue engineering in the musculoskeletal system and describe their advantages and fabrication strategies. METHODS:The first author of the article searched the Web of Science and PubMed databases for articles published from 2000 to 2023 with search terms"gradient,bone regeneration,scaffold".Finally,76 papers were analyzed and summarized after the screening. RESULTS AND CONCLUSION:(1)As an important means of efficient and high-quality repair of skeletal system tissues,gradient artificial bone repair scaffolds are currently designed bionically for the natural gradient characteristics of bone tissue,bone-cartilage,and tendon-bone tissue.These scaffolds can mimic the extracellular matrix of native tissues to a certain extent in terms of structure and composition,thus promoting cell adhesion,migration,proliferation,differentiation,and regenerative recovery of damaged tissues to their native state.(2)Advanced manufacturing technology provides more possibilities for gradient artificial bone repair scaffold preparation:Gradient electrospun fiber scaffolds constructed by spatially differentiated fiber arrangement and loading of biologically active substances have been developed;gradient 3D printed scaffolds fabricated by layered stacking,graded porosity,and bio-3D printing technology;gradient hydrogel scaffolds fabricated by in-situ layered injections,simple layer-by-layer stacking,and freeze-drying method;and in addition,there are also scaffolds made by other modalities or multi-method coupling.These scaffolds have demonstrated good biocompatibility in vitro experiments,were able to accelerate tissue regeneration in small animal tests,and were observed to have significantly improved histological structure.(3)The currently developed gradient artificial bone repair scaffolds have problems such as mismatch of gradient scales,unclear material-tissue interactions,and side effects caused by degradation products,which need to be further optimized by combining the strengths of related disciplines and clinical needs in the future.
2.Real-world characteristics and treatment patterns in Chinese patients with newly diagnosed endometrial cancer.
Aijun YIN ; Dong WANG ; Yanlin LUO ; Ruifang AN ; Shuzhong YAO ; Yufei SHEN ; Li SUN ; Cuirong LEI ; Yan TIAN ; Li WANG ; Dan ZHONG ; Manman XU ; Yuanyuan JIANG ; Min ZHANG ; Binqi ZHANG ; Huirong MAO ; Fengshi DONG ; Yu ZHANG ; Beihua KONG
Chinese Medical Journal 2025;138(13):1624-1626
3.Biomechanical characteristics of lower limbs after discoid lateral meniscus injury surgery.
Zirui ZHOU ; Siqi WANG ; Xiaojing TIAN ; Bingbing XU ; Mingming LEI ; Jianquan WANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):891-895
OBJECTIVE:
To review the research progress on the lower limb biomechanical characteristics of patients with discoid lateral meniscus (DLM) injury after surgery.
METHODS:
By searching relevant domestic and international research literature on DLM, the postoperative characteristics of knee joint movement biomechanics, tibiofemoral joint stress distribution, lower extremity force line, and patellofemoral joint changes in patients with DLM injury were summarized.
RESULTS:
Surgical treatment can lead to varying degrees of changes in the lower limb biomechanical characteristics of patients with DLM injury. Specifically, the kinematic biomechanics of the knee joint can significantly improve, but there are still problems such as extension deficits in the affected knee joint. The peak stress of the tibiofemoral joint decreases with the increase of the residual meniscus volume, and the degree of change is closely related to the residual meniscus volume. Preserving a larger volume of the meniscus, especially the anterior horn volume, helps to reduce stress concentration. The lower extremity force line will deviate outward after surgery, and the more meniscus is removed during surgery, the greater the change in the lower extremity force line after surgery. There are conditions such as cartilage degeneration, position and angle changes in the patellofemoral joint after surgery.
CONCLUSION
The changes in the lower limb biomechanical characteristics after DLM injury are closely related to the choice of surgical methods and rehabilitation programs. However, the mechanisms of biomechanical changes in multiple lower limb joints and individual differences still need to be further studied and clarified.
Humans
;
Biomechanical Phenomena
;
Tibial Meniscus Injuries/physiopathology*
;
Menisci, Tibial/physiopathology*
;
Knee Joint/surgery*
;
Lower Extremity/physiopathology*
;
Patellofemoral Joint/physiopathology*
;
Range of Motion, Articular
;
Knee Injuries/physiopathology*
4.Bear Bile Powder Ameliorates LPS-Induced Acute Lung Injury by Inhibiting CD14 Pathway and Improving Intestinal Flora: Exploration of "Fei (Lung)-Dachang (Large Intestine) Interaction" Theory.
Long CHENG ; Hui-Ling TIAN ; Hong-Yuan LEI ; Ying-Zhou WANG ; Ma-Jing JIAO ; Yun-Hui LIANG ; Zhi-Zheng WU ; Xu-Kun DENG ; Yong-Shen REN
Chinese journal of integrative medicine 2025;31(9):821-829
OBJECTIVE:
To explore the effect of bear bile powder (BBP) on acute lung injury (ALI) and the underlying mechanism.
METHODS:
The chemical constituents of BBP were analyzed by ultra-high-pressure liquid chromatography-mass spectrometry (UPLC-MS). After 7 days of adaptive feeding, 50 mice were randomly divided into 5 groups by a random number table (n=10): normal control (NC), lipopolysaccharide (LPS), dexamethasone (Dex), low-, and high-dose BBP groups. The dosing cycle was 9 days. On the 12th and 14th days, 20 µL of Staphylococcus aureus solution (bacterial concentration of 1 × 10-7 CFU/mL) was given by nasal drip after 1 h of intragastric administration, and the mice in the NC group was given the same dose of phosphated buffered saline (PBS) solution. On the 16th day, after 1 h intragastric administration, 100 µL of LPS solution (1 mg/mL) was given by tracheal intubation, and the same dose of PBS solution was given to the NC group. Lung tissue was obtained to measure the myeloperoxidase (MPO) activity, the lung wet/dry weight ratio and expressions of CD14 and other related proteins. The lower lobe of the right lung was obtained for pathological examination. The concentrations of inflammatory cytokines including interleukin (IL)-6, tumour necrosis factor α (TNF-α ) and IL-1β in the bronchoalveolar lavage fluid (BALF) were detected by enzyme linked immunosorbent assay, and the number of neutrophils was counted. The colonic contents of the mice were analyzed by 16 sRNA technique and the contents of short-chain fatty acids (SCFAs) were measured by gas chromatograph-mass spectrometer (GC-MS).
RESULTS:
UPLC-MS revealed that the chemical components of BBP samples were mainly tauroursodeoxycholic acid and taurochenodeoxycholic acid sodium salt. BBP reduced the activity of MPO, concentrations of inflammatory cytokines, and inhibited the expression of CD14 protein, thus suppressing the activation of NF-κB pathway (P<0.05). The lung histopathological results indicated that BBP significantly reduced the degree of neutrophil infiltration, cell shedding, necrosis, and alveolar cavity depression. Moreover, BBP effectively regulated the composition of the intestinal microflora and increased the production of SCFAs, which contributed to its treatment effect (P<0.05).
CONCLUSIONS
BBP alleviates lung injury in ALI mouse through inhibiting activation of NF-κB pathway and decreasing expression of CD14 protein. BBP may promote recovery of ALI by improving the structure of intestinal flora and enhancing metabolic function of intestinal flora.
Animals
;
Acute Lung Injury/pathology*
;
Lipopolysaccharides
;
Ursidae
;
Gastrointestinal Microbiome/drug effects*
;
Bile/chemistry*
;
Lipopolysaccharide Receptors/metabolism*
;
Powders
;
Male
;
Lung/drug effects*
;
Mice
;
Peroxidase/metabolism*
;
Signal Transduction/drug effects*
;
Cytokines/metabolism*
5.Engineered Escherichia coli Nissle 1917 targeted delivery of extracellular PD-L1-mFc fragment for treating inflammatory bowel disease.
Yuhong WANG ; Lin HU ; Lei WANG ; Chonghai ZHANG ; Wenhao SHEN ; Hongli YANG ; Min LI ; Xin ZHANG ; Mengmeng XU ; Muxing ZHANG ; Kai YANG ; Xiaopeng TIAN
Acta Pharmaceutica Sinica B 2025;15(11):6019-6033
Inflammatory bowel disease (IBD) is an autoimmune disorder involving complex immune regulation, where balancing localized and systemic immunosuppression is a key challenge. This study aimed to enhance the therapeutic efficacy by engineering the probiotic Escherichia coli Nissle 1917 (EcN). We removed endogenous plasmids pMUT1 and pMUT2 from wild-type EcN and expressed the mPD-L1 (19‒238 aa)-mFc fusion protein on the bacterial surface using a cytolysin A (ClyA) fragment. This modification stabilized mPD-L1 (19‒238 aa) protein expression and promoted its recruitment to outer membrane vesicles (OMVs). The engineered strain, EcNΔpMUT1/2-ClyA-mPD-L1-mFc (EcN-ePD-L1-mFc), features conditional ePD-L1-mFc expression under the araBAD promoter, enhancing gut-targeted release and reducing systemic side effects. This strain improved treatment targeting and efficiency by enabling direct ePD-L1-mFc interaction with immune cells at inflammation sites. OMVs from this strain induced Treg proliferation, inhibited effector T cell proliferation in vitro, and significantly improved intestinal inflammation and colonic epithelial barrier repair in vivo. Additionally, the bacterium restored intestinal microbiota balance, increasing Lactobacillaceae and reducing Bacteroides. This study highlights the engineered bacterium's potential for targeted intestinal immune modulation and offers a novel local IBD treatment approach with promising clinical prospects.
6.Correction to: A Virtual Reality Platform for Context-Dependent Cognitive Research in Rodents.
Xue-Tong QU ; Jin-Ni WU ; Yunqing WEN ; Long CHEN ; Shi-Lei LV ; Li LIU ; Li-Jie ZHAN ; Tian-Yi LIU ; Hua HE ; Yu LIU ; Chun XU
Neuroscience Bulletin 2025;41(5):932-932
7.Single-cell transcriptomics identifies PDGFRA+ progenitors orchestrating angiogenesis and periodontal tissue regeneration.
Jianing LIU ; Junxi HE ; Ziqi ZHANG ; Lu LIU ; Yuan CAO ; Xiaohui ZHANG ; Xinyue CAI ; Xinyan LUO ; Xiao LEI ; Nan ZHANG ; Hao WANG ; Ji CHEN ; Peisheng LIU ; Jiongyi TIAN ; Jiexi LIU ; Yuru GAO ; Haokun XU ; Chao MA ; Shengfeng BAI ; Yubohan ZHANG ; Yan JIN ; Chenxi ZHENG ; Bingdong SUI ; Fang JIN
International Journal of Oral Science 2025;17(1):56-56
Periodontal bone defects, primarily caused by periodontitis, are highly prevalent in clinical settings and manifest as bone fenestration, dehiscence, or attachment loss, presenting a significant challenge to oral health. In regenerative medicine, harnessing developmental principles for tissue repair offers promising therapeutic potential. Of particular interest is the condensation of progenitor cells, an essential event in organogenesis that has inspired clinically effective cell aggregation approaches in dental regeneration. However, the precise cellular coordination mechanisms during condensation and regeneration remain elusive. Here, taking the tooth as a model organ, we employed single-cell RNA sequencing to dissect the cellular composition and heterogeneity of human dental follicle and dental papilla, revealing a distinct Platelet-derived growth factor receptor alpha (PDGFRA) mesenchymal stem/stromal cell (MSC) population with remarkable odontogenic potential. Interestingly, a reciprocal paracrine interaction between PDGFRA+ dental follicle stem cells (DFSCs) and CD31+ Endomucin+ endothelial cells (ECs) was mediated by Vascular endothelial growth factor A (VEGFA) and Platelet-derived growth factor subunit BB (PDGFBB). This crosstalk not only maintains the functionality of PDGFRA+ DFSCs but also drives specialized angiogenesis. In vivo periodontal bone regeneration experiments further reveal that communication between PDGFRA+ DFSC aggregates and recipient ECs is essential for effective angiogenic-osteogenic coupling and rapid tissue repair. Collectively, our results unravel the importance of MSC-EC crosstalk mediated by the VEGFA and PDGFBB-PDGFRA reciprocal signaling in orchestrating angiogenesis and osteogenesis. These findings not only establish a framework for deciphering and promoting periodontal bone regeneration in potential clinical applications but also offer insights for future therapeutic strategies in dental or broader regenerative medicine.
Receptor, Platelet-Derived Growth Factor alpha/metabolism*
;
Humans
;
Neovascularization, Physiologic/physiology*
;
Dental Sac/cytology*
;
Single-Cell Analysis
;
Transcriptome
;
Mesenchymal Stem Cells/metabolism*
;
Bone Regeneration
;
Animals
;
Dental Papilla/cytology*
;
Periodontium/physiology*
;
Stem Cells/metabolism*
;
Regeneration
;
Angiogenesis
8.Anti-angiogenic therapy as a beacon of hope in the battle against pulmonary NUT midline carcinoma.
Linyan TIAN ; Siyu LEI ; Yaning YANG ; Haiyan XU ; Chengming LIU ; Yan WANG
Frontiers of Medicine 2025;19(4):681-688
Primary pulmonary nuclear protein of the testis (NUT) midline carcinoma (NMC) is a rare and highly aggressive thoracic malignancy that poses significant diagnostic and therapeutic challenges in clinical practice. This tumor is characterized by its heterogeneous clinical presentations and poor prognosis, often evading accurate initial diagnosis. In this study, we present two cases of primary pulmonary NMC treated with an integrated therapeutic approach combining anti-angiogenic agents, platinum-based chemotherapy, and radiotherapy. This multimodal strategy achieved survival durations of 32 and 13 months, respectively, surpassing the currently reported median survival of advanced NMC. Through a systematic literature review of reported cases, we have summarized the currently used diagnostic methods and treatment modalities for NMC. Our findings suggest that multimodal therapy incorporating anti-angiogenic treatment may offer superior clinical outcomes compared to conventional monotherapy regimens, particularly for patients who are not eligible for surgery. This comprehensive investigation enhances our understanding of NMC management by elucidating diagnostic pitfalls through histopathological correlation and proposing an effective therapeutic combination that demonstrates improved survival outcomes. By providing valuable insights into the diagnosis and treatment of primary pulmonary NMC, we hope to contribute to the development of more effective strategies for managing this rare and aggressive malignancy.
Humans
;
Angiogenesis Inhibitors/therapeutic use*
;
Carcinoma/therapy*
;
Combined Modality Therapy
;
Lung Neoplasms/diagnosis*
;
Nuclear Proteins
;
Oncogene Proteins
;
Neoplasm Proteins
9.The Catalytic Mechanism and Activity Modulation of Manganese Superoxide Dismutase
Xu ZHANG ; Lei ZHANG ; Peng-Lin XU ; Tian-Ran LI ; Rui-Qing CHAO ; Zheng-Hao HAN
Progress in Biochemistry and Biophysics 2024;51(1):20-32
Manganese superoxide dismutase catalyzes the dismutation of two molecules of superoxide radicals to one molecule of oxygen and one molecule of hydrogen peroxide. The oxidation of superoxide anion to oxygen by Mn3+SOD proceeds at a rate close to diffusion. The reduction of superoxide anion to hydrogen peroxide by Mn2+SOD can be progressed parallelly in either a fast or a slow cycle pathway. In the slow cycle pathway, Mn2+SOD forms a product inhibitory complex with superoxide anion, which is protonated and then slowly releases hydrogen peroxide out. In the fast cycle pathway, superoxide anion is directly converted into product hydrogen peroxide by Mn2+SOD, which facilitates the revival and turnover of the enzyme. We proposed for the first time that temperature is a key factor that regulates MnSOD into the slow- or fast-cycle catalytic pathway. Normally, the Mn2+ rest in the pent-coordinated state with four amino acid residues (His26, His74, His163 and Asp159) and one water (WAT1) in the active center of MnSOD. The sixth coordinate position on Mn (orange arrow) is open for water (WAT2, green) or O2• to coordinate. With the cold contraction in the active site as temperature decreases, WAT2 is closer to Mn, which may spatially interfere with the entrance of O2• into the inner sphere, and avoid O2•/Mn2+ coordination to reduce product inhibition. Low temperature compels the reaction into the faster outer sphere pathway, resulting in a higher gating ratio for the fast-cycle pathway. As the temperature increases in the physiological temperature range, the slow cycle becomes the mainstream of the whole catalytic reaction, so the increasing temperature in the physiological range inhibits the activity of the enzyme. The biphasic enzymatic kinetic properties of manganese superoxide dismutase can be rationalized by a temperature-dependent coordination model of the conserved active center of the enzyme. When the temperature decreases, a water molecule (or OH-) is close to or even coordinates Mn, which can interfere with the formation of product inhibition. So, the enzymatic reaction occurs mainly in the fast cycle pathway at a lower temperature. Finally, we describe the several chemical modifications of the enzyme, indicating that manganese superoxide dismutase can be rapidly regulated in many patterns (allosteric regulation and chemical modification). These regulatory modulations can rapidly and directly change the activation of the enzyme, and then regulate the balance and fluxes of superoxide anion and hydrogen peroxide in cells. We try to provide a new theory to reveal the physiological role of manganese superoxide dismutase and reactive oxygen species.
10.Application of Mitochondrial Targeting Strategy of Nano-delivery System in Tumor Diagnosis and Treatment
Jun QU ; Shuang YAN ; Long-Tian-Yang LEI ; Fei-Jun OUYANG ; Hai-Tao ZHANG ; Xu-Ping QIN
Progress in Biochemistry and Biophysics 2024;51(1):70-81
Tumor is one of the major diseases that endanger people’s health. At present, the treatments used for tumor include surgery, chemotherapy, radiotherapy and so on. Nonetheless, the traditional treatments have some disadvantages, such as insufficient treatment effect, liable to cause multidrug resistance, toxicity and side effect. Further research and exploration of tumor treatment schemes are still necessary. As the energy converter of cells, mitochondria are currently considered to be one of the most important targets for the design of new drugs for tumor, cardiovascular and neurological diseases. Nano-drug delivery carriers have the characteristics of being easily modified with active targeting groups, and it can achieve accurate targeted drug delivery to cells and organelles. This paper reviews the application of mitochondrial targeted nanoparticles in tumor diagnosis and treatment from the aspects of inhibiting tumor cell proliferation, promoting tumor cell apoptosis, inhibiting tumor recurrence and metastasis, and inducing cell autophagy.

Result Analysis
Print
Save
E-mail