1.Textual Research and Clinical Application Analysis of Classic Formula Fangji Fulingtang
Xiaoyang TIAN ; Lyuyuan LIANG ; Mengting ZHAO ; Jialei CAO ; Lan LIU ; Keke LIU ; Bingqi WEI ; Yihan LI ; Jing TANG ; Yujie CHANG ; Jingwen LI ; Bingxiang MA ; Weili DANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):270-277
The classic formula Fangji Fulingtang is from ZHANG Zhongjing's Synopsis of the Golden Chamber in the Eastern Han dynasty. It is composed of Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma, with the effects of reinforcing Qi and invigorating spleen, warming Yang and promoting urination. By a review of ancient medical books, this paper summarizes the composition, original plants, processing, dosage, decocting methods, indications and other key information of Fangji Fulingtang, aiming to provide a literature basis for the research, development, and clinical application of preparations based on this formula. Synonyms of Fangji Fulingtang exist in ancient medical books, while the formula composition in the Synopsis of the Golden Chamber is more widespread and far-reaching. In this formula, Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma are the dried root of Stephania tetrandra, the dried root of Astragalus embranaceus var. mongholicus, the dried shoot of Cinnamomum cassia, the dried sclerotium of Poria cocos, and the dried root and rhizome of Glycyrrhiza uralensis, respectively. Fangji Fulingtang is mainly produced into powder, with the dosage and decocting method used in the past dynasties basically following the original formula. Each bag is composed of Stephaniae Tetrandrae Radix 13.80 g, Astragali Radix 13.80 g, Cinnamomi Ramulus 13.80 g, Poria 27.60 g, and Glycyrrhizae Radix et Rhizoma 9.20 g. The raw materials are purified, decocted in water from 1 200 mL to 400 mL, and the decoction should be taken warm, 3 times a day. Fangji Fulingtang was originally designed for treating skin edema, and then it was used to treat impediment in the Qing dynasty. In modern times, it is mostly used to treat musculoskeletal and connective tissue diseases and circulatory system diseases, demonstrating definite effects on various types of edema and heart failure. This paper clarifies the inheritance of Fangji Fulingtang and reveals its key information (attached to the end of this paper), aiming to provide a theoretical basis for the development of preparations based on this formula.
2.Textual Research and Clinical Application Analysis of Classic Formula Fangji Fulingtang
Xiaoyang TIAN ; Lyuyuan LIANG ; Mengting ZHAO ; Jialei CAO ; Lan LIU ; Keke LIU ; Bingqi WEI ; Yihan LI ; Jing TANG ; Yujie CHANG ; Jingwen LI ; Bingxiang MA ; Weili DANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):270-277
The classic formula Fangji Fulingtang is from ZHANG Zhongjing's Synopsis of the Golden Chamber in the Eastern Han dynasty. It is composed of Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma, with the effects of reinforcing Qi and invigorating spleen, warming Yang and promoting urination. By a review of ancient medical books, this paper summarizes the composition, original plants, processing, dosage, decocting methods, indications and other key information of Fangji Fulingtang, aiming to provide a literature basis for the research, development, and clinical application of preparations based on this formula. Synonyms of Fangji Fulingtang exist in ancient medical books, while the formula composition in the Synopsis of the Golden Chamber is more widespread and far-reaching. In this formula, Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma are the dried root of Stephania tetrandra, the dried root of Astragalus embranaceus var. mongholicus, the dried shoot of Cinnamomum cassia, the dried sclerotium of Poria cocos, and the dried root and rhizome of Glycyrrhiza uralensis, respectively. Fangji Fulingtang is mainly produced into powder, with the dosage and decocting method used in the past dynasties basically following the original formula. Each bag is composed of Stephaniae Tetrandrae Radix 13.80 g, Astragali Radix 13.80 g, Cinnamomi Ramulus 13.80 g, Poria 27.60 g, and Glycyrrhizae Radix et Rhizoma 9.20 g. The raw materials are purified, decocted in water from 1 200 mL to 400 mL, and the decoction should be taken warm, 3 times a day. Fangji Fulingtang was originally designed for treating skin edema, and then it was used to treat impediment in the Qing dynasty. In modern times, it is mostly used to treat musculoskeletal and connective tissue diseases and circulatory system diseases, demonstrating definite effects on various types of edema and heart failure. This paper clarifies the inheritance of Fangji Fulingtang and reveals its key information (attached to the end of this paper), aiming to provide a theoretical basis for the development of preparations based on this formula.
3.Annual review of basic research on lung transplantation of China in 2024
Jier MA ; Junmin ZHU ; Lan ZHANG ; Xiaohan JIN ; Xiangyun ZHENG ; Senlin HOU ; Zengwei YU ; Yaling LIU ; Haoji YAN ; Dong TIAN
Organ Transplantation 2025;16(3):386-393
Lung transplantation is the optimal treatment for end-stage lung diseases and can significantly improve prognosis of the patients. However, postoperative complications such as infection, rejection, ischemia-reperfusion injury, and other challenges (like shortage of donor lungs) , limit the practical application of lung transplantation in clinical practice. Chinese research teams have been making continuous efforts and have achieved breakthroughs in basic research on lung transplantation by integrating emerging technologies and cutting-edge achievements from interdisciplinary fields, which has strongly propelled the development of this field. This article will comprehensively review the academic progress made by Chinese research teams in the field of lung transplantation in 2024, with a focus on the achievements of Chinese teams in basic research on lung transplantation. It aims to provide innovative ideas and strategies for key issues in the basic field of lung transplantation and to help China's lung transplantation cause reach a higher level.
4.Effects of exercise intervention on intestinal flora in college students:a systematic review
Zhaozhi LIU ; Li HUANG ; Haodong TIAN ; Lan LI ; Xiao CHEN ; Yunfei TAO ; Li PENG
Chinese Journal of Tissue Engineering Research 2025;29(11):2394-2401
BACKGROUND:The regulation of intestinal flora by exercise is closely related to human health,but intestinal flora involves many factors.Existing studies have lacked consistent evidence on the effect of exercise on the intestinal flora of college students. OBJECTIVE:To explore the effects of exercise on intestinal flora diversity and species composition of college students. METHODS:Through systematic search of PubMed,Web of Science,Embase,Medline,Cochrane Library,CNKI,WanFang Database and VIP database,eight empirical studies were selected and included,and semi-quantitative analysis was performed on them. RESULTS AND CONCLUSION:In terms of the species diversity of the intestinal flora,both high-intensity interval training and Tai Chi exercise significantly enhance the species diversity of intestinal flora in college students,while aerobic exercise does not have a significant effect on the enhancement of intestinal flora diversity in college students.In terms of the species composition of the intestinal flora,all three exercise modalities significantly alter the compositional structure of the intestinal flora in college students,which can increase the abundance of beneficial bacteria such as Ruminalococcus,Faecalis prevotelli,Blautia,and decrease the abundance of harmful bacteria such as Escherichia spp.Compared with high-intensity interval training,aerobic and Tai Chi exercise causes more elevated abundance of beneficial bacteria.In addition to changes in intestinal flora characteristics,exercise improves body composition,cardiorespiratory function,and executive function in college students,and these health benefits are closely linked to exercise-induced changes in intestinal flora that can produce health benefits for the body through metabolic regulation,barrier function,and neuromodulation.Although studies have confirmed the association between exercise and intestinal flora,the mechanism by which exercise affects intestinal flora has not yet been clarified,and at the same time,localizing the flora related to the host health is the key to targeting intestinal flora as a therapeutic target in the future,all of which are worthy of further attention and investigation.
5.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection.
6.Buzhong Yiqi Decoction alleviates immune injury of autoimmune thyroiditis in NOD.H-2~(h4)mice via c GAS-STING signaling pathway.
Yi-Ran CHEN ; Lan-Ting WANG ; Qing-Yang LIU ; Zhao-Han ZHAI ; Shou-Xin JU ; Xue-Ying CHEN ; Zi-Yu LIU ; Xiao YANG ; Tian-Shu GAO ; Zhi-Min WANG
China Journal of Chinese Materia Medica 2025;50(7):1872-1880
This study aims to explore the effects of Buzhong Yiqi Decoction(BYD) on the cyclic guanosine monophosphate-adenosine monophosphate synthase(cGAS)-stimulator of interferon genes(STING) signaling pathway in the mouse model of autoimmune thyroiditis(AIT) and the mechanism of BYD in alleviating the immune injury. Forty-eight NOD.H-2~(h4) mice were assigned into normal, model, low-, medium-, and high-dose BYD, and selenium yeast tablets groups(n=8). Mice of 8 weeks old were treated with 0.05% sodium iodide solution for 8 weeks for the modeling of AIT and then administrated with corresponding drugs by gavage for 8 weeks before sampling. High performance liquid chromatography was employed to measure the astragaloside Ⅳ content in BYD. Hematoxylin-eosin staining was employed to observe the pathological changes in the mouse thyroid tissue. Enzyme-linked immunosorbent assay was employed to measure the serum levels of thyroid peroxidase antibody(TPO-Ab), thyroglobulin antibody(TgAb), and interferon-γ(IFN-γ). Flow cytometry was employed to detect the distribution of T cell subsets in the spleen. The immunohistochemical method was used to detect the expression of cGAS, STING, TANK-binding kinase 1(TBK1), and interferon regulatory factor 3(IRF3). Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of markers related to the cGAS-STING signaling pathway in the thyroid tissue. The results showed that the content of astragaloside Ⅳ in BYD was(7.06±0.08) mg·mL~(-1). Compared with the normal group, the model group showed disrupted structures of thyroid follicular epithelial cells, massive infiltration of lymphocytes, and elevated levels of TgAb and TPO-Ab. Compared with the model group, the four treatment groups showed intact epithelial cells, reduced lymphocyte infiltration, and lowered levels of TgAb and TPO-Ab. Compared with the normal group, the model group showed increases in the proportions of Th1 and Th17 cells, a decrease in the proportion of Th2 cells, and an increase in the IFN-γ level. Compared with the model group, the four treatment groups presented decreased proportions of Th1 and Th17 cells and lowered levels of IFN-γ, and the medium-dose BYD group showed an increase in the proportion of Th2 cells. Compared with the normal group, the modeling up-regulated the mRNA levels of cGAS, STING, TBK1, and IRF3 and the protein levels of cGAS, p-STING, p-TBK1, and p-IRF3. Compared with the model group, the four treatment groups showed reduced levels of cGAS, STING, TBK1, and IRF3-positive products, down-regulated mRNA levels of cGAS, STING, and TBK1, and down-regulated protein levels of cGAS and p-STING. The high-dose BYD group showed down-regulations in the mRNA level of IRF3 and the protein levels of p-TBK1 and p-IRF3. The above results indicate that BYD can repair the imbalance of T cell subsets, alleviate immune injury, and reduce thyroid lymphocyte infiltration in AIT mice by inhibiting the cGAS-STING signaling pathway.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Signal Transduction/drug effects*
;
Thyroiditis, Autoimmune/metabolism*
;
Mice
;
Membrane Proteins/metabolism*
;
Mice, Inbred NOD
;
Humans
;
Female
;
Nucleotidyltransferases/metabolism*
;
Male
;
Disease Models, Animal
7.Glucocorticoid Discontinuation in Patients with Rheumatoid Arthritis under Background of Chinese Medicine: Challenges and Potentials Coexist.
Chuan-Hui YAO ; Chi ZHANG ; Meng-Ge SONG ; Cong-Min XIA ; Tian CHANG ; Xie-Li MA ; Wei-Xiang LIU ; Zi-Xia LIU ; Jia-Meng LIU ; Xiao-Po TANG ; Ying LIU ; Jian LIU ; Jiang-Yun PENG ; Dong-Yi HE ; Qing-Chun HUANG ; Ming-Li GAO ; Jian-Ping YU ; Wei LIU ; Jian-Yong ZHANG ; Yue-Lan ZHU ; Xiu-Juan HOU ; Hai-Dong WANG ; Yong-Fei FANG ; Yue WANG ; Yin SU ; Xin-Ping TIAN ; Ai-Ping LYU ; Xun GONG ; Quan JIANG
Chinese journal of integrative medicine 2025;31(7):581-589
OBJECTIVE:
To evaluate the dynamic changes of glucocorticoid (GC) dose and the feasibility of GC discontinuation in rheumatoid arthritis (RA) patients under the background of Chinese medicine (CM).
METHODS:
This multicenter retrospective cohort study included 1,196 RA patients enrolled in the China Rheumatoid Arthritis Registry of Patients with Chinese Medicine (CERTAIN) from September 1, 2019 to December 4, 2023, who initiated GC therapy. Participants were divided into the Western medicine (WM) and integrative medicine (IM, combination of CM and WM) groups based on medication regimen. Follow-up was performed at least every 3 months to assess dynamic changes in GC dose. Changes in GC dose were analyzed by generalized estimator equation, the probability of GC discontinuation was assessed using Kaplan-Meier curve, and predictors of GC discontinuation were analyzed by Cox regression. Patients with <12 months of follow-up were excluded for the sensitivity analysis.
RESULTS:
Among 1,196 patients (85.4% female; median age 56.4 years), 880 (73.6%) received IM. Over a median 12-month follow-up, 34.3% (410 cases) discontinued GC, with significantly higher rates in the IM group (40.8% vs. 16.1% in WM; P<0.05). GC dose declined progressively, with IM patients demonstrating faster reductions (median 3.75 mg vs. 5.00 mg in WM at 12 months; P<0.05). Multivariate Cox analysis identified age <60 years [P<0.001, hazard ratios (HR)=2.142, 95% confidence interval (CI): 1.523-3.012], IM therapy (P=0.001, HR=2.175, 95% CI: 1.369-3.456), baseline GC dose ⩽7.5 mg (P=0.003, HR=1.637, 95% CI: 1.177-2.275), and absence of non-steroidal anti-inflammatory drugs use (P=0.001, HR=2.546, 95% CI: 1.432-4.527) as significant predictors of GC discontinuation. Sensitivity analysis (545 cases) confirmed these findings.
CONCLUSIONS
RA patients receiving CM face difficulties in following guideline-recommended GC discontinuation protocols. IM can promote GC discontinuation and is a promising strategy to reduce GC dependency in RA management. (Trial registration: ClinicalTrials.gov, No. NCT05219214).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Arthritis, Rheumatoid/drug therapy*
;
Glucocorticoids/therapeutic use*
;
Medicine, Chinese Traditional
;
Retrospective Studies
8.Ferrum@albumin assembled nanoclusters inhibit NF-κB signaling pathway for NIR enhanced acute lung injury immunotherapy.
Xiaoxuan GUAN ; Binbin ZOU ; Weiqian JIN ; Yan LIU ; Yongfeng LAN ; Jing QIAN ; Juan LUO ; Yanjun LEI ; Xuzhi LIANG ; Shiyu ZHANG ; Yuting XIAO ; Yan LONG ; Chen QIAN ; Chaoyu HUANG ; Weili TIAN ; Jiahao HUANG ; Yongrong LAI ; Ming GAO ; Lin LIAO
Acta Pharmaceutica Sinica B 2025;15(11):5891-5907
Acute lung injury (ALI) has been a kind of acute and severe disease that is mainly characterized by systemic uncontrolled inflammatory response to the production of huge amounts of reactive oxygen species (ROS) in the lung tissue. Given the critical role of ROS in ALI, a Fe3O4 loaded bovine serum albumin (BSA) nanocluster (BF) was developed to act as a nanomedicine for the treatment of ALI. Combining with NIR irradiation, it exhibited excellent ROS scavenging capacity. Significantly, it also displayed the excellent antioxidant and anti-inflammatory functions for lipopolysaccharides (LPS) induced macrophages (RAW264.7), and Sprague Dawley rats via lowering intracellular ROS levels, reducing inflammatory factors expression levels, inducing macrophage M2 polarization, inhibiting NF-κB signaling pathway, increasing CD4+/CD8+ T cell ratios, as well as upregulating HSP70 and CD31 expression levels to reprogram redox homeostasis, reduce systemic inflammation, activate immunoregulation, and accelerate lung tissue repair, finally achieving the synergistic enhancement of ALI immunotherapy. It finally provides an effective therapeutic strategy of BF + NIR for the management of inflammation related diseases.
9.Evaluation of pharmacokinetics and metabolism of three marine-derived piericidins for guiding drug lead selection.
Weimin LIANG ; Jindi LU ; Ping YU ; Meiqun CAI ; Danni XIE ; Xini CHEN ; Xi ZHANG ; Lingmin TIAN ; Liyan YAN ; Wenxun LAN ; Zhongqiu LIU ; Xuefeng ZHOU ; Lan TANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):614-629
This study investigates the pharmacokinetics and metabolic characteristics of three marine-derived piericidins as potential drug leads for kidney disease: piericidin A (PA) and its two glycosides (GPAs), glucopiericidin A (GPA) and 13-hydroxyglucopiericidin A (13-OH-GPA). The research aims to facilitate lead selection and optimization for developing a viable preclinical candidate. Rapid absorption of PA and GPAs in mice was observed, characterized by short half-lives and low bioavailability. Glycosides and hydroxyl groups significantly enhanced the absorption rate (13-OH-GPA > GPA > PA). PA and GPAs exhibited metabolic instability in liver microsomes due to Cytochrome P450 enzymes (CYPs) and uridine diphosphoglucuronosyl transferases (UGTs). Glucuronidation emerged as the primary metabolic pathway, with UGT1A7, UGT1A8, UGT1A9, and UGT1A10 demonstrating high elimination rates (30%-70%) for PA and GPAs. This rapid glucuronidation may contribute to the low bioavailability of GPAs. Despite its low bioavailability (2.69%), 13-OH-GPA showed higher kidney distribution (19.8%) compared to PA (10.0%) and GPA (7.3%), suggesting enhanced biological efficacy in kidney diseases. Modifying the C-13 hydroxyl group appears to be a promising approach to improve bioavailability. In conclusion, this study provides valuable metabolic insights for the development and optimization of marine-derived piericidins as potential drug leads for kidney disease.
Animals
;
Male
;
Mice
;
Aquatic Organisms/chemistry*
;
Biological Availability
;
Cytochrome P-450 Enzyme System/metabolism*
;
Glucuronosyltransferase/metabolism*
;
Microsomes, Liver/metabolism*
;
Molecular Structure
;
Biological Products/pharmacokinetics*
;
Pyridines/pharmacokinetics*
10.Paclitaxel anti-cancer therapeutics: from discovery to clinical use.
Haizheng YU ; Fen LAN ; Yuan ZHUANG ; Qizhang LI ; Lianqing ZHANG ; Hongchang TIAN ; Xiao BU ; Ruibing CHEN ; Yingying GAO ; Zhuo WANG ; Lei ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):769-789
Paclitaxel (PTX), a valuable natural product derived from Taxus species, exhibits remarkable anti-cancer properties. It penetrates nanopores in microtubule walls, interacting with tubulin on the lumen surface and disrupting microtubule dynamics, thereby inducing cytotoxic effects in cancer cells. PTX and its derivatives have gained approval for treating various diseases due to their low toxicity, high efficiency, and broad-spectrum application. The widespread success and expanding applications of PTX have led to increased demand, raising concerns about accessibility. Consequently, researchers globally have focused on developing alternative production methods and applying nanocarriers in PTX delivery systems to enhance bioavailability. This review examines the challenges and advancements in PTX sourcing, production, physicochemical properties, anti-cancer mechanisms, clinical applications, trials, and chemo-immunotherapy. It aims to provide a comprehensive reference for the rational development and effective utilization of PTX.
Humans
;
Paclitaxel/pharmacology*
;
Antineoplastic Agents, Phytogenic/pharmacology*
;
Neoplasms/drug therapy*
;
Animals
;
Taxus/chemistry*

Result Analysis
Print
Save
E-mail