1.PAK5-mediated PKM2 phosphorylation is critical for anaerobic glycolysis in endometriosis.
Jiayi LU ; Xiaoyun WANG ; Xiaodan SHI ; Junyi JIANG ; Lan LIU ; Lu LIU ; Chune REN ; Chao LU ; Zhenhai YU
Frontiers of Medicine 2024;18(6):1054-1067
P21-activated kinase 5 (PAK5) belongs to the PAK-II subfamily, which is an important regulator of cell survival, adhesion, and motility. However, the functions of PAK5 in endometriosis remain unclear. Here, PAK5 is strikingly upregulated in endometriosis. Furthermore, the knockdown of PAK5 or its inhibitor GNE 2861 blocks the development of endometriosis, which is equally demonstrated in PAK5-knockout mice. In addition, PAK5 promotes glycolysis by enhancing the protein stability of pyruvate kinase 2 (PKM2) in endometriotic cells, which is a key enzyme for glucose metabolism. Moreover, the phosphorylation of PKM2 at Ser519 by PAK5 mediates endometriosis cell proliferation and metastasis. Collectively, PAK5 plays an indispensable role in endometriosis. Our findings demonstrate that PAK5 is an important target for the treatment of endometriosis.
Endometriosis/genetics*
;
Female
;
Animals
;
p21-Activated Kinases/genetics*
;
Mice
;
Phosphorylation
;
Glycolysis
;
Humans
;
Thyroid Hormone-Binding Proteins
;
Membrane Proteins/genetics*
;
Carrier Proteins/genetics*
;
Cell Proliferation
;
Mice, Knockout
;
Thyroid Hormones/metabolism*
;
Pyruvate Kinase/genetics*
2.Antepartal insulin-like growth factor concentrations indicating differences in the metabolic adaptive capacity of dairy cows.
Marion PIECHOTTA ; Lars HOLZHAUSEN ; Marcelo Gil ARAUJO ; Maike HEPPELMANN ; Anja SIPKA ; Chistiane PFARRER ; Hans Joachim SCHUBERTH ; Heinrich BOLLWEIN
Journal of Veterinary Science 2014;15(3):343-352
Cows with different Insulin-like Growth Factor-I (IGF-I) concentrations showed comparable expression levels of hepatic growth hormone receptor (GHR). Suppressor of cytokine signaling 2 (SOCS2), could be responsible for additional inhibition of the GHR signal cascade. The aims were to monitor cows with high or low antepartal IGF-I concentrations (IGF-I(high) or IGF-I(low)), evaluate the interrelationships of endocrine endpoints, and measure hepatic SOCS2 expression. Dairy cows (n = 20) were selected (240 to 254 days after artificial insemination (AI)). Blood samples were drawn daily (day -17 until calving) and IGF-I, GH, insulin, thyroid hormones, estradiol, and progesterone concentrations were measured. Liver biopsies were taken (day 264 +/- 1 after AI and postpartum) to measure mRNA expression (IGF-I, IGFBP-2, IGFBP-3, IGFBP-4, acid labile subunit (ALS), SOCS2, deiodinase1, GHR1A). IGF-I concentrations in the two groups were different (p < 0.0001). However, GH concentrations and GHR1A mRNA expression were comparable (p > 0.05). Thyroxine levels and ALS expression were higher in the IGF-I(high) cows compared to IGF-I(low) cows. Estradiol concentration tended to be greater in the IGF-I(low) group (p = 0.06). It was hypothesized that low IGF-I levels are associated with enhanced SOCS2 expression although this could not be decisively confirmed by the present study.
Animals
;
Cattle
;
Estradiol/blood
;
Female
;
Growth Hormone/blood
;
Insulin/blood
;
Insulin-Like Growth Factor Binding Protein 2/analysis
;
Insulin-Like Growth Factor Binding Protein 3/analysis
;
Insulin-Like Growth Factor Binding Protein 4/analysis
;
Insulin-Like Growth Factor I/*analysis/physiology
;
Liver/chemistry
;
Pregnancy/metabolism/physiology
;
Pregnancy, Animal/*metabolism/physiology
;
Progesterone/blood
;
Suppressor of Cytokine Signaling Proteins/analysis
;
Thyroid Hormones/blood
3.Relationship of NOR-1 with the regulation of inflammation via liver X receptor alpha in Kupffer cells.
Zhuo-ya DAI ; Jian-ping GONG ; Si-dong WEI
Chinese Journal of Hepatology 2011;19(7):542-546
OBJECTIVETo investigate the relationship of NOR-1 with the inhibition of inflammatory reaction in mice Kupffer cells (KCs) induced by lipopolysaccharide (LPS) via liver X receptor alpha (LXR alpha).
METHODSKCs from male KM mice were isolated by density gradient centrifugation, incubated and then randomly assigned to three groups: control group, LPS treated group and LPS+T0901317 treated group.
RESULTSThe mRNA and protein expressions of LXR alpha and NOR-1 in each group were determined by RT-PCR, immunofluorescent assay and western blot, respectively. The densities of TNF alpha and IL-10 in supernatants were evaluated by enzyme linked immunosorbent assay (ELISA). The mRNA and protein expression levels of LXR alpha in LPS + T0901317 group were the highest as compared to the other two groups (0.748+/-0.072 and 1.217+/-0.133 respectively), The mRNA and protein expression levels of NOR-1 in LPS+ T0901317 group were the highest as compared to the other two groups (2.726+/-0.065 and 0.842+/-0.058 respectively). The densities of supernatant TNF alpha in LPS group and IL-10 in LPS+T0901317 group were the highest [(450.89+/-78.52) ng/L and (537.41+/-36.41) ng/L respectively].
CONCLUSIONSPromoting the expression of LXR alpha in KCs can elevate the NOR-1 expression and then inhibit inflammatory reaction.
Animals ; Cells, Cultured ; DNA-Binding Proteins ; metabolism ; Inflammation ; metabolism ; Interleukin-10 ; metabolism ; Kupffer Cells ; metabolism ; Liver X Receptors ; Male ; Mice ; Mice, Inbred Strains ; Nerve Tissue Proteins ; metabolism ; Orphan Nuclear Receptors ; metabolism ; Receptors, Steroid ; metabolism ; Receptors, Thyroid Hormone ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism
4.The functional role of the CARM1-SNF5 complex and its associated HMT activity in transcriptional activation by thyroid hormone receptor.
Hyo Kyoung CHOI ; Kyung Chul CHOI ; So Young OH ; Hee Bum KANG ; Yoo Hyun LEE ; Seungjoo HAAM ; Yong Ho AHN ; Kyung Sup KIM ; Kunhong KIM ; Ho Geun YOON
Experimental & Molecular Medicine 2007;39(4):544-555
We have investigated the function and mechanisms of the CARM1-SNF5 complex in T3-dependent transcriptional activation. Using specific small interfering RNAs (siRNA) to knock down coactivators in HeLa alpha2 cells, we found that coactivator associated arginine methyltransferase 1 (CARM1) and SWI/SNF complex component 5 (SNF5) are important for T3-dependent transcriptional activation. The CARM1- SWI/SNF chromatin remodeling complex serves as a mechanism for the rapid reversal of H3-K9 methylation. Importantly, siRNA treatment against CARM1 and/or SNF5 increased the recruitment of HMTase G9a to the type 1 deiodinase (D1) promoter even with T3. Knocking- down either CARM1 or SNF5 also inhibited the down- regulation of histone macroH2A, which is correlated with transcriptional activation. Finally, knocking down CARM1 and SNF5 by siRNA impaired the association of these coactivators to the D1 promoter, suggesting functional importance of CARM1- SNF5 complex in T3-dependent transcriptional activation.
Chromosomal Proteins, Non-Histone/*physiology
;
DNA-Binding Proteins/*physiology
;
Hela Cells
;
Histone-Lysine N-Methyltransferase/*metabolism
;
Histones/metabolism
;
Humans
;
Iodide Peroxidase/metabolism
;
Methylation
;
Promoter Regions, Genetic
;
Protein Methyltransferases
;
Protein-Arginine N-Methyltransferase/*physiology
;
Receptors, Thyroid Hormone/*physiology
;
Transcription Factors/*physiology
;
*Transcriptional Activation

Result Analysis
Print
Save
E-mail