1.The expression characteristics of TXN in pan cancer and its impact on tumor immunity and prognosis.
Annan SUN ; Luna SUN ; Hao WU ; Pu LI
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):706-716
Objective TXN is a thioredoxin (TXN) that participates in many redox reactions and plays a crucial role in various signaling pathways. However, the role of TXN in many cancers is still unclear. The objective of this study is to investigate and visualize the diagnostic, prognostic, and immunological implications of TXN expression across various cancer types. Methods The clinical data were downloaded from the cancer genome mapping project(TCGA) database to analyze the expression level of TXN in pan cancer, and the expression level was preliminarily verified by human protein mapping (HPA)(https://www.proteinatlas.org/)database. The ESTIMATE algorithm and CIBERSORT algorithm were applied to calculate the correlation between TXN expression and immune cell infiltration. The correlation between TXN and microsatellite instability (MSI) and tumor mutation burden (TMB) was analyzed using Spearman method. Gene Set Enrichment Analysis (GSEA) is used for gene biology functional analysis and sensitivity analysis of genes to pan cancer therapeutic drugs. Results TXN is highly expressed in most malignant tumors. The high expression of TXN is associated with overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression free interval (PFI) in various cancers. Moreover, TXN expression is associated with TMB, MSI, tumor microenvironment, chemotherapy sensitivity and so on. Conclusion TXN may become a potential prognostic biomarker in pan cancer, providing strong theoretical basis for future tumor diagnosis and prognosis judgment. The retinoic acid-inducible gene-I (RIG-I)-like receptor signaling pathway, Toll-like receptor (TLR) signaling pathway, and nucleotide binding oligomerization domain (NOD)-like receptor signaling pathway may be crucial pathways through which TXN influences tumor immunity.
Humans
;
Prognosis
;
Neoplasms/diagnosis*
;
Thioredoxins/metabolism*
;
Microsatellite Instability
;
Gene Expression Regulation, Neoplastic
;
Biomarkers, Tumor/genetics*
;
Mutation
;
Tumor Microenvironment
2.Application of genome tagging technology in elucidating the function of sperm-specific protein 411 (Ssp411).
Xue-Hai ZHOU ; Min-Min HUA ; Jia-Nan TANG ; Bang-Guo WU ; Xue-Mei WANG ; Chang-Gen SHI ; Yang YANG ; Jun WU ; Bin WU ; Bao-Li ZHANG ; Yi-Si SUN ; Tian-Cheng ZHANG ; Hui-Juan SHI
Asian Journal of Andrology 2025;27(1):120-128
The genome tagging project (GTP) plays a pivotal role in addressing a critical gap in the understanding of protein functions. Within this framework, we successfully generated a human influenza hemagglutinin-tagged sperm-specific protein 411 (HA-tagged Ssp411) mouse model. This model is instrumental in probing the expression and function of Ssp411. Our research revealed that Ssp411 is expressed in the round spermatids, elongating spermatids, elongated spermatids, and epididymal spermatozoa. The comprehensive examination of the distribution of Ssp411 in these germ cells offers new perspectives on its involvement in spermiogenesis. Nevertheless, rigorous further inquiry is imperative to elucidate the precise mechanistic underpinnings of these functions. Ssp411 is not detectable in metaphase II (MII) oocytes, zygotes, or 2-cell stage embryos, highlighting its intricate role in early embryonic development. These findings not only advance our understanding of the role of Ssp411 in reproductive physiology but also significantly contribute to the overarching goals of the GTP, fostering groundbreaking advancements in the fields of spermiogenesis and reproductive biology.
Animals
;
Female
;
Humans
;
Male
;
Mice
;
Spermatids/metabolism*
;
Spermatogenesis/physiology*
;
Spermatozoa/metabolism*
;
Thioredoxins/genetics*
3.Resveratrol Attenuates Inflammation in Acute Lung Injury through ROS-Triggered TXNIP/NLRP3 Pathway.
Wen-Han HUANG ; Kai-Ying FAN ; Yi-Ting SHENG ; Wan-Ru CAI
Chinese journal of integrative medicine 2025;31(12):1078-1086
OBJECTIVE:
To evaluate the protective effects of resveratrol against acute lung injury (ALI) and investigate the potential mechanisms underlying the reactive oxygen species (ROS)-triggered thioredoxin-interacting protein (TXNIP)/NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) pathway.
METHODS:
C57BL/6 mice and J774A.1 cells were selected as the research subjects. Thirty Mice were randomly divided into 5 groups of 6 in each group: control with 0.9% saline, 5 mg/kg lipopolysaccharide (LPS) 24 h, 25 mg/kg resveratrol + 5 mg/kg LPS, 100 mg/kg resveratrol + 5 mg/kg LPS, and 4 mg/kg NLRP3 inhibitor CY-09 + 5 mg/kg LPS. For cell stimulation, cells were pretreated with 5 and 20 µmol/L resveratrol for 2 h, and stimulated with or without 1 µg/mL LPS and 3 mmol/L ATP for 2 h. The antioxidant N-acetyl-L-cysteine (NAC, 2 µmol/L) was used as the positive control group. Hematoxylin and eosin staining was used to evaluate the degree of lung LPS-induced tissue damage, and enzyme-linked immunosorbent assay was used to evaluate the contents of interleukin-1 β (IL-1 β) and IL-18 in the serum and cell supernatant. ROS and malondialdehyde (MDA) levels in the lung tissue were detected using the corresponding kits. Western blotting was used to detect the expressions of TXNIP, high-mobility group box 1 (HMGB1), NLRP3, as well as cysteine-aspartic acid protease 1 (caspase-1) and gasdermin D (GSDMD) along with their cleaved forms in lung tissue. Additionally, reverse transcription quantitative polymerase chain reaction was performed to analyze the expression of related inflammatory cytokines. ROS content was detected using flow cytometry and confocal laser microscopy. Mitochondrial morphological changes were observed using transmission electron microscopy, and HMGB1 expression was detected using immunofluorescence.
RESULTS:
Resveratrol significantly alleviated LPS-induced lung damage with reduced inflammation, interstitial edema, and leukocyte infiltration (P<0.01). It also decreased serum levels of IL-1 β and IL-18 (P<0.05), while downregulating the expressions of NLRP3, IL-6, and other inflammatory markers at both the protein and mRNA levels (P<0.05). Notably, the higher dose (100 mg/kg) demonstrated a better effect than the lower dose (25 mg/kg). In macrophages, resveratrol reduced IL-1 β and IL-18 following LPS and ATP stimulation, suppressed HMGB1 translocation, and inhibited formation and activation of the NLRP3 inflammasome (P<0.05 or P<0.01). These anti-inflammatory effects were mediated through the suppression ROS accumulation (P<0.01) and mitochondrial dysfunction. Transmission electron microscopy revealed that resveratrol preserved mitochondrial structure, preventing the mitochondrial damage seen in LPS-treated groups (P<0.01). The expressions of cleaved caspase-1, cleaved GSDMD, and cytoplasmic HMGB1 were all reduced following resveratrol treatment (P<0.01). Moreover, resveratrol inhibited dissociation of TXNIP from thioredoxin, blocking subsequent activation of NLRP3 and downstream inflammatory cytokines (P<0.01). Similarly, the higher concentration of resveratrol (20 µ mol/L) exhibited superior efficacy in vitro.
CONCLUSION
Resveratrol can reduce the inflammatory response following ALI and inhibit the activation of NLRP3 inflammasome and the level of HMGB1 in the cytoplasm by inhibiting ROS overproduction.
Acute Lung Injury/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Animals
;
Resveratrol/pharmacology*
;
Reactive Oxygen Species/metabolism*
;
Inflammation/complications*
;
Mice, Inbred C57BL
;
Carrier Proteins/metabolism*
;
Signal Transduction/drug effects*
;
Lipopolysaccharides
;
Thioredoxins/metabolism*
;
Mice
;
Lung/drug effects*
;
Male
;
Cell Line
;
Interleukin-1beta/metabolism*
;
Cell Cycle Proteins
;
Stilbenes/therapeutic use*
4.The role of ROS/TXNIP/NLRP3 pathway in the skin injury of trichloroethylene sensitized mice.
Jia Le PENG ; Hai Bo XIE ; Yi Can WANG ; Hua HUANG ; Qi Xing ZHU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(4):241-247
Objective: To explore the mechanism of reactive oxygen species/thioredoxin-interacting protein/nucleotide-binding oligomerization domain-like receptor 3 (ROS/TXNIP/NLRP3) pathway in the skin injury of trichloroethylene (TCE) sensitized mice. Methods: In August 2020, 40 female BALB/c mice were randomly divided into control group (n=5) , solvent control group (n=5) , TCE treatment group (n=15) and TCE+(2-(2, 2, 6, 6-Tetrameyhylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (Mito TEMPO) treatment group (n=15) . The TCE sensitization model was established. Mice in the TCE treatment group and TCE+Mito TEMPO treatment group were divided into the sensitized positive group and the sensitized negative group according to the skin erythema and edema reactions on the back of the mice 24 h after the last stimulation. The mice were sacrificed 72 h after the last stimulation, the back skin of the mice was taken, and the skin lesions were observed. Immunohistochemistry (IHC) was used to detect the expression level of NLRP3, and the Western Blot was performed to detect the expression levels of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC) , cysteinyl aspartate specific proteinase 1 (Caspase 1) , Interleukin-1β (IL-1β) and TXNIP proteins in the skin of the mice, the reactive oxygen species (ROS) kit was used to detect the level of intracellular ROS in the back skin tissue. Results: The sensitization rates of TCE treatment group and TCE+Mito TEMPO treatment group were 40.0% (6/15) and 33.3% (5/15) , respectively, and there was no significant difference between the two groups (P>0.05) . The back skin of the mice in the TCE sensitized positive group was thickened and infiltrated by a large number of inflammatory cells. The number of mitochondria in the epidermis cells was significantly reduced, the mitochondrial crest disappeared and vacuolar degeneration occurred. TCE+Mito TEMPO sensitized positive group had less damage, more mitochondria and relatively normal cell structure. Compared with the solvent control group and corresponding sensitized negative groups, the expression levels of NLRP3, ASC, Caspase 1, IL-1β, TXNIP proteins and the content of ROS in the TCE sensitized positive group and TCE+Mito TEMPO sensitized positive group were significantly increased (P<0.05) . Compared with TCE sensitized positive group, the expression levels of NLRP3, ASC, Caspase 1, IL-1β, TXNIP proteins and the content of ROS in the TCE+Mito TEMPO sensitized positive group were significantly decreased (P<0.05) . Conclusion: ROS/TXNIP/NLRP3 pathway was activated and then encouraged the release of IL-1β, finally aggravated the TCE-induced skin injury.
Animals
;
Carrier Proteins
;
Caspase 1/metabolism*
;
Female
;
Inflammasomes/metabolism*
;
Mice
;
Mice, Inbred BALB C
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Solvents
;
Thioredoxins/metabolism*
;
Trichloroethylene/toxicity*
6.Expressions of Thioredoxin Interacting Protein/Nucleotide-binding Oligomerization Domain-like Receptor Protein 3 Inflammasome in the Sciatic Nerve of Streptozotocin-induced Diabetic Rats.
Qing SUN ; Chao WANG ; Bin YAN ; Hu Xiao SHI ; Yue SHI ; Ling QU ; Chun Xiao LIANG
Acta Academiae Medicinae Sinicae 2019;41(6):799-805
To investigate the role of thioredoxin interacting protein(TXNIP)/ nucleotides-binding oligomerization domain-like receptor protein(NLRP)3 inflammasome in the sciatic nerve of streptozotocin(STZ)-induced diabetic rats. The diabetic rat model was established by single intraperitoneal injection of STZ.The rats with matched sex and age were taken as normal control group.The blood glucose and body weight were monitored.The mechanical withdrawal threshold was measured by von Frey filaments at 12 weeks after the model was established.At 12 weeks,the rats were sacrificed and the sciatic nerves were separated for Luxol fast blue staining,the expressions of TXNIP,NLRP3,caspase-1,and interleukin(IL)-1β were detected by immunohistochemistry and Western blot method,and the levels of IL-1β and IL-18 in serum were measured by enzyme-linked immunosorbent assay(ELISA). The expression of TXNIP protein in the sciatic nerve of diabetic rats was 3.78±0.08,which significantly increased than that in the normal control group(0.99±0.06)(=26.980,<0.0001).Compared with the normal control group(0.97±0.05),the expression of NLRP3 protein in the diabetic group(2.44±0.16)was significantly higher(=8.885,<0.0001).The expression of cleaved caspase-1 was 4.45±0.19 in the diabetic group and 1.08±0.06 in the normal control group,and the difference was significant(=16.900,<0.0001).The expression of IL-1β protein in the diabetic group(4.50±0.16)was significantly higher than that(1.19±0.08)in the normal control group(=18.630,<0.0001).Compared with the normal control group,the levels of IL-1β [(110.50±8.80)pg/ml (17.97±3.18)pg/ml,=9.892,<0.0001] and IL-18 [(591.70±8.78)pg/ml (160.70±8.33)pg/ml,=35.620,<0.0001] in the serum of diabetic rats significantly increased. The pathogenesis of diabetic peripheral neuropathy may be related to increased expression of TXNIP,activation of NLRP3 inflammasome,and downstream inflammation,which may provide a new target for diabetic peripheral neuropathy therapy.
Animals
;
Diabetes Mellitus, Experimental
;
Inflammasomes
;
Nucleotides
;
Rats
;
Sciatic Nerve
;
Streptozocin
;
Thioredoxins
7.Identification of proteins differentially expressed by glutamate treatment in cerebral cortex of neonatal rats
Ju Bin KANG ; Dong Ju PARK ; Phil Ok KOH
Laboratory Animal Research 2019;35(4):172-179
Glutamate leads to neuronal cell damage by generating neurotoxicity during brain development. The objective of this study is to identify proteins that differently expressed by glutamate treatment in neonatal cerebral cortex. Sprague-Dawley rat pups (post-natal day 7) were intraperitoneally injected with vehicle or glutamate (10 mg/kg). Brain tissues were isolated 4 h after drug treatment and fixed for morphological study. Moreover, cerebral cortices were collected for protein study. Two-dimensional gel electrophoresis and mass spectrometry were carried out to identify specific proteins. We observed severe histopathological changes in glutamate-exposed cerebral cortex. We identified various proteins that differentially expressed by glutamate exposure. Identified proteins were thioredoxin, peroxiredoxin 5, ubiquitin carboxy-terminal hydrolase L1, proteasome subunit alpha proteins, isocitrate dehydrogenase, and heat shock protein 60. Heat shock protein 60 was increased in glutamate exposed condition. However, other proteins were decreased in glutamate-treated animals. These proteins are related to anti-oxidant, protein degradation, metabolism, signal transduction, and anti-apoptotic function. Thus, our findings can suggest that glutamate leads to neonatal cerebral cortex damage by regulation of specific proteins that mediated with various functions.
Animals
;
Brain
;
Cerebral Cortex
;
Chaperonin 60
;
Electrophoresis, Gel, Two-Dimensional
;
Glutamic Acid
;
Humans
;
Infant, Newborn
;
Isocitrate Dehydrogenase
;
Mass Spectrometry
;
Metabolism
;
Neurons
;
Peroxiredoxins
;
Proteasome Endopeptidase Complex
;
Proteolysis
;
Proteomics
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Thioredoxins
;
Ubiquitin Thiolesterase
8.Recombinant Human Thioredoxin-1 Protects Macrophages from Oxidized Low-Density Lipoprotein-Induced Foam Cell Formation and Cell Apoptosis.
Hui ZHANG ; Qi LIU ; Jia Le LIN ; Yu WANG ; Ruo Xi ZHANG ; Jing Bo HOU ; Bo YU
Biomolecules & Therapeutics 2018;26(2):121-129
Oxidized low-density lipoprotein (ox-LDL)-induced macrophage foam cell formation and apoptosis play critical roles in the pathogenesis of atherosclerosis. Thioredoxin-1 (Trx) is an antioxidant that potently protects various cells from oxidative stress-induced cell death. However, the protective effect of Trx on ox-LDL-induced macrophage foam cell formation and apoptosis has not been studied. This study aims to investigate the effect of recombinant human Trx (rhTrx) on ox-LDL-stimulated RAW264.7 macrophages and elucidate the possible mechanisms. RhTrx significantly inhibited ox-LDL-induced cholesterol accumulation and apoptosis in RAW264.7 macrophages. RhTrx also suppressed the ox-LDL-induced overproduction of lectin-like oxidized LDL receptor (LOX-1), Bax and activated caspase-3, but it increased the expression of Bcl-2. In addition, rhTrx markedly inhibited the ox-LDL-induced production of intracellular reactive oxygen species (ROS) and phosphorylation of p38 mitogen-activated protein kinases (MAPK). Furthermore, anisomycin (a p38 MAPK activator) abolished the protective effect of rhTrx on ox-LDL-stimulated RAW264.7 cells, and SB203580 (a p38 MAPK inhibitor) exerted a similar effect as rhTrx. Collectively, these findings indicate that rhTrx suppresses ox-LDL-stimulated foam cell formation and macrophage apoptosis by inhibiting ROS generation, p38 MAPK activation and LOX-1 expression. Therefore, we propose that rhTrx has therapeutic potential in the prevention and treatment of atherosclerosis.
Anisomycin
;
Apoptosis*
;
Atherosclerosis
;
Caspase 3
;
Cell Death
;
Cholesterol
;
Foam Cells*
;
Humans*
;
Lipoproteins
;
Macrophages*
;
p38 Mitogen-Activated Protein Kinases
;
Phosphorylation
;
Reactive Oxygen Species
;
Receptors, Oxidized LDL
;
Thioredoxins*
9.Cellular stress and redox activity proteins are involved in gastric carcinogenesis associated with Helicobacter pylori infection expressing high levels of thioredoxin-1.
Yan-Yan SHI ; Jing ZHANG ; Ting ZHANG ; Man ZHOU ; Ye WANG ; He-Jun ZHANG ; Shi-Gang DING
Journal of Zhejiang University. Science. B 2018;19(10):750-763
Helicobacter pylori infection is related to the development of gastric diseases. Our previous studies showed that high thioredoxin-1 (Trx1) expression in H. pylori can promote gastric carcinogenesis. To explore the underlying molecular mechanisms, we performed an isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis of stomach tissues from Mongolian gerbil infected with H. pylori expressing high and low Trx1. Differences in the profiles of the expressed proteins were analyzed by bioinformatics and verified using Western blot analysis. We found three candidate proteins, 14-3-3α/β, glutathione-S-transferase (GST), and heat shock protein 70 (HSP70), in high Trx1 tissues compared with low Trx1 tissues and concluded that cellular stress and redox activity-related proteins were involved in the pathogenesis of gastric cancer associated with H. pylori Trx1.
14-3-3 Proteins/physiology*
;
Animals
;
Computational Biology
;
Gerbillinae
;
Glutathione Transferase/physiology*
;
HSP70 Heat-Shock Proteins/physiology*
;
Helicobacter Infections/complications*
;
Helicobacter pylori
;
Oxidation-Reduction
;
Stomach Neoplasms/etiology*
;
Stress, Physiological
;
Thioredoxins/physiology*
10.Downregulation of Reactive Oxygen Species in Apoptosis.
Journal of Cancer Prevention 2016;21(1):13-20
Generation of reactive oxygen species (ROS) by diverse anti-cancer drugs or phytochemicals has been closely related with the induction of apoptosis in cancers. Also, the downregulation of ROS by these chemicals has been found to block initiation of carcinogenesis. Therefore, modulation of ROS by phytochemicals emerges as a crucial mechanism to regulate apoptosis in cancer prevention or therapy. This review summarizes the current understanding of the selected chemical compounds and related cellular components that modulate ROS during apoptotic process. Metformin, quercetin, curcumin, vitamin C, and other compounds have been shown to downregulate ROS in the cellular apoptotic process, and some of them even induce apoptosis in cancer cells. The cellular components mediating the downregulation of ROS include nuclear factor erythroid 2-related factor 2 antioxidant signaling pathway, thioredoxin, catalase, glutathione, heme oxygenase-1, and uncoupling proteins. The present review provides information on the relationship between these compounds and the cellular components in modulating ROS in apoptotic cancer cells.
Apoptosis*
;
Ascorbic Acid
;
Carcinogenesis
;
Catalase
;
Curcumin
;
Down-Regulation*
;
Glutathione
;
Heme Oxygenase-1
;
Metformin
;
Negotiating
;
Phytochemicals
;
Quercetin
;
Reactive Oxygen Species*
;
Thioredoxins

Result Analysis
Print
Save
E-mail