1.Effect of acupuncture on neuronal function in the thalamic reticular nucleus of insomnia rats based on α7-nAChR.
Zhijun SHU ; Yipeng XU ; Quanyi ZHANG ; Dingjun CAI ; Zhengyu ZHAO
Chinese Acupuncture & Moxibustion 2025;45(12):1751-1758
OBJECTIVE:
To investigate the role of α7-nicotinic acetylcholine receptor (α7-nAChR) in the regulation of neuronal activity and expression of synapse-related proteins in the thalamic reticular nucleus (TRN) of insomnia rats treated by acupuncture.
METHODS:
A total of 36 male Sprague-Dawley (SD) rats of clean grade were randomly divided into a control group, a model group, an acupuncture group, and an acupuncture+antagonist group, with 9 rats in each group. The model group, the acupuncture group, and the acupuncture+antagonist group were treated with intraperitoneal injection of p-chlorophenylalanine (PCPA) to establish insomnia model. After successful modeling, the acupuncture group and the acupuncture+antagonist group received acupuncture at bilateral Neiguan (PC6) and Zusanli (ST36) once daily for 5 consecutive days. Thirty min before each acupuncture session, the acupuncture+antagonist group was intraperitoneally injected with methyllycaconitine citrate (MLA), an α7-nAChR antagonist, at a dosage of 5 mg/kg while the acupuncture group received the same volume of 0.9% sodium chloride solution. The rats' daytime spontaneous activity was observed. Neuronal discharge in the TRN was detected using neuroelectrophysiological methods. Immunofluorescence staining was used to detect parvalbumin-positive (PV+) neurons and co-expression of PV+ and postsynaptic density protein-95 (PSD-95) in the TRN.
RESULTS:
Compared with the control group, the model group showed increased daytime spontaneous activity (P<0.01); decreased average fluorescence intensity and positive number of PV+ neurons in the TRN (P<0.01); decreased neuronal discharge frequency (P<0.01), prolonged inter-discharge intervals (P<0.01) in the TRN; reduced number of PV+/PSD-95 double-positive cells in the TRN (P<0.01). Compared with the model group, the acupuncture group showed decreased daytime spontaneous activity (P<0.01); increased average fluorescence intensity and positive number of PV+ neurons in the TRN (P<0.01); increased neuronal discharge frequency (P<0.01), shortened inter-discharge intervals (P<0.01) in the TRN; increased number of PV+/PSD-95 double-positive cells in the TRN (P<0.05). Compared with the acupuncture group, the acupuncture+antagonist group exhibited increased daytime spontaneous activity (P<0.01); reduced average fluorescence intensity and positive number of PV⁺ neurons in the TRN (P<0.01); decreased neuronal discharge frequency (P<0.05), prolonged inter-discharge intervals (P<0.05) in the TRN; reduced number of PV+/PSD-95 double-positive cells in the TRN (P<0.01).
CONCLUSION
α7-nAChR are involved in mediating the regulatory effect of acupuncture on circadian rhythm disturbances in PCPA-induced insomnia rats. Blocking α7-nAChR attenuates the activating effect of acupuncture on TRN neurons, and reduces the expression of PSD-95 protein on GABAergic neurons.
Animals
;
Male
;
Acupuncture Therapy
;
alpha7 Nicotinic Acetylcholine Receptor/genetics*
;
Rats, Sprague-Dawley
;
Rats
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Neurons/metabolism*
;
Humans
;
Thalamic Nuclei/physiopathology*
;
Acupuncture Points
;
Disks Large Homolog 4 Protein
2.Glutamatergic neurons in thalamic paraventricular nucleus may be involved in the regulation of abnormal sleep behavior of Shank3 gene knockout mice.
Chang-Feng CHEN ; Lie-Cheng WANG ; Yong LIU ; Lei CHEN
Acta Physiologica Sinica 2025;77(5):792-800
The purpose of this study was to investigate the anxiety-like behaviors, circadian rhythms and sleep, and to elucidate the possible underlying mechanisms of the abnormal sleep behavior in Shank3 gene knockout (Shank3-KO) mice. The anxiety-like behaviors were detected by elevated plus-maze (EPM) test, open field test (OFT) and tail suspension test (TST). The circadian rhythms were detected by running wheel test. The electroencephalogram (EEG)/electromyogram (EMG) recordings were performed synchronically by polysomnograph. The distribution of SHANK3 in anterior cingulate cortex (ACC), paraventricular thalamus (PVT), nucleus accumbens (NAc), basolateral amygdala (BLA) and hippocampal CA2 region in wild type (WT) mice was detected by immunofluorescence assay. The protein expression of c-Fos in PVT, ACC and NAc was also detected by immunofluorescence assay during light cycle. The colocalization of c-Fos and vesicular glutamate transporter 2 (Vglut2, a marker for glutamatergic neurons) in the PVT was detected by immunofluorescence double labeling experiment. The results of EPM test showed that, compared with the WT mice, the Shank3-KO mice showed less time in open arms and less number of open arm entries. The results of OFT showed that the Shank3-KO mice showed less time in central area and less number of central area entries. The immobility time of Shank3-KO mice was increased in the TST. The results of running wheel rhythm test showed that the phase shift time of Shank3-KO mice in the continuous dark period was increased. The results of EEG/EMG recording showed that, compared with the WT mice, the duration of wakefulness in Shank3-KO mice was increased and the duration of non-rapid eye movement (NREM) sleep was decreased during light phase; The bout number of wakefulness was increased, the bout number of NREM sleep was decreased, NREM-wake transitions were increased, and wake-NREM transitions were decreased during light phase. SHANK3 was expressed in ACC, PVT, NAc and BLA in the WT mice. The expression of c-Fos in the PVT of Shank3-KO mice was up-regulated 2 h after entering the light phase, and majority of c-Fos was co-localized with Vglut2. These results suggest that the anxiety level of Shank3-KO mice is increased, the regulation of the internal rhythms is decreased, and the bout number of wakefulness is increased during light phase. The glutamatergic neurons in PVT may be involved in the regulation of abnormal sleep behavior in Shank3-KO mice during the light phase.
Animals
;
Mice, Knockout
;
Mice
;
Neurons/metabolism*
;
Nerve Tissue Proteins/physiology*
;
Male
;
Midline Thalamic Nuclei/cytology*
;
Circadian Rhythm/physiology*
;
Sleep/physiology*
;
Anxiety/physiopathology*
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Vesicular Glutamate Transport Protein 2/metabolism*
;
Mice, Inbred C57BL
;
Microfilament Proteins
3.Histaminergic Innervation of the Ventral Anterior Thalamic Nucleus Alleviates Motor Deficits in a 6-OHDA-Induced Rat Model of Parkinson's Disease.
Han-Ting XU ; Xiao-Ya XI ; Shuang ZHOU ; Yun-Yong XIE ; Zhi-San CUI ; Bei-Bei ZHANG ; Shu-Tao XIE ; Hong-Zhao LI ; Qi-Peng ZHANG ; Yang PAN ; Xiao-Yang ZHANG ; Jing-Ning ZHU
Neuroscience Bulletin 2025;41(4):551-568
The ventral anterior (VA) nucleus of the thalamus is a major target of the basal ganglia and is closely associated with the pathogenesis of Parkinson's disease (PD). Notably, the VA receives direct innervation from the hypothalamic histaminergic system. However, its role in PD remains unknown. Here, we assessed the contribution of histamine to VA neuronal activity and PD motor deficits. Functional magnetic resonance imaging showed reduced VA activity in PD patients. Optogenetic activation of VA neurons or histaminergic afferents significantly alleviated motor deficits in 6-OHDA-induced PD rats. Furthermore, histamine excited VA neurons via H1 and H2 receptors and their coupled hyperpolarization-activated cyclic nucleotide-gated channels, inward-rectifier K+ channels, or Ca2+-activated K+ channels. These results demonstrate that histaminergic afferents actively compensate for Parkinsonian motor deficits by biasing VA activity. These findings suggest that targeting VA histamine receptors and downstream ion channels may be a potential therapeutic strategy for PD motor dysfunction.
Animals
;
Histamine/metabolism*
;
Male
;
Oxidopamine/toxicity*
;
Rats
;
Ventral Thalamic Nuclei/physiopathology*
;
Rats, Sprague-Dawley
;
Disease Models, Animal
;
Parkinson Disease/metabolism*
;
Neurons/physiology*
;
Humans
;
Optogenetics
4.NMDA receptors in prelimbic cortex neurons projecting to paraventricular nucleus of the thalamus are associated with morphine withdrawal memory retrieval.
Chen-Shan CHU ; Ya-Xian WEN ; Qian-Ru SHEN ; Bin LAI ; Ming CHEN ; Ping ZHENG
Acta Physiologica Sinica 2024;76(6):917-926
At present, the problem of drug addiction treatment mainly lies in the high relapse rate of drug addicts. Addictive drugs will bring users a strong sense of euphoria and promote drug seeking. Once the drug is withdrawn, there will be withdrawal symptoms such as strong negative emotions and uncomfortable physical reactions. The recurrence of context-induced withdrawal memory is an important reason for drug relapse. Our previous study has shown increased c-Fos expression in prelimbic cortex (PrL) neurons projecting to paraventricular nucleus of the thalamus (PVT) (PrL-PVT) during conditioned context-induced retrieval of morphine withdrawal memory. However, whether PrL-PVT neurons are involved in withdrawal memory retrieval and the underlying molecular mechanisms remain unknown. In this study, we used conditioned place aversion (CPA) model combined with in vivo calcium signal recording, chemogenetics and nucleus drug injection methods to investigate the role and molecular mechanism of PrL-PVT neurons in retrieval of morphine withdrawal memory. The results showed that the calcium signals of PrL-PVT neurons were significantly enhanced by withdrawal-related context; Inhibition of PrL-PVT neurons blocked the conditioned context-induced morphine withdrawal memory retrieval; Activation of PrL-PVT neurons caused animals to escape from the context; After the inhibition of NMDA receptors in the PrL, withdrawal-related context failed to increase c-Fos and Arc expressions in PrL-PVT neurons. The above results suggest that NMDA receptors in PrL-PVT neurons are associated with retrieval of morphine withdrawal memory. This study is of great significance for further understanding the neural circuit mechanism of withdrawal memory retrieval as well as the intervention and prevention of drug relapse.
Animals
;
Substance Withdrawal Syndrome/physiopathology*
;
Morphine/adverse effects*
;
Neurons/physiology*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Male
;
Rats
;
Paraventricular Hypothalamic Nucleus/metabolism*
;
Memory
;
Rats, Sprague-Dawley
;
Morphine Dependence/physiopathology*
;
Midline Thalamic Nuclei/physiology*
;
Neural Pathways/metabolism*
5.Modulating the Pronociceptive Effect of Sleep Deprivation: A Possible Role for Cholinergic Neurons in the Medial Habenula.
Xiang-Sha YIN ; Bai-Rong CHEN ; Xi-Chun YE ; Yun WANG
Neuroscience Bulletin 2024;40(12):1811-1825
Sleep deprivation has been shown to exacerbate pain sensitivity and may contribute to the onset of chronic pain, yet the precise neural mechanisms underlying this association remain elusive. In our study, we explored the contribution of cholinergic neurons within the medial habenula (MHb) to hyperalgesia induced by sleep deprivation in rats. Our findings indicate that the activity of MHb cholinergic neurons diminishes during sleep deprivation and that chemogenetic stimulation of these neurons can mitigate the results. Interestingly, we did not find a direct response of MHb cholinergic neurons to pain stimulation. Further investigation identified the interpeduncular nucleus (IPN) and the paraventricular nucleus of the thalamus (PVT) as key players in the pro-nociceptive effect of sleep deprivation. Stimulating the pathways connecting the MHb to the IPN and PVT alleviated the hyperalgesia. These results underscore the important role of MHb cholinergic neurons in modulating pain sensitivity linked to sleep deprivation, highlighting potential neural targets for mitigating sleep deprivation-induced hyperalgesia.
Animals
;
Habenula/physiology*
;
Sleep Deprivation/physiopathology*
;
Cholinergic Neurons/physiology*
;
Male
;
Hyperalgesia/physiopathology*
;
Rats, Sprague-Dawley
;
Rats
;
Interpeduncular Nucleus/physiology*
;
Pain Threshold/physiology*
;
Midline Thalamic Nuclei/physiology*
;
Neural Pathways/physiopathology*
6.Altered Local Field Potential Relationship Between the Parafascicular Thalamic Nucleus and Dorsal Striatum in Hemiparkinsonian Rats.
Haiyan ZHANG ; Jing YANG ; Xuenan WANG ; Xiaomeng YAO ; Hongyu HAN ; Yunfeng GAO ; Hongli CHANG ; Tianyu XIANG ; Shuang SUN ; Yanan WANG ; Xiusong WANG ; Min WANG
Neuroscience Bulletin 2019;35(2):315-324
The thalamostriatal pathway is implicated in Parkinson's disease (PD); however, PD-related changes in the relationship between oscillatory activity in the centromedian-parafascicular complex (CM/Pf, or the Pf in rodents) and the dorsal striatum (DS) remain unclear. Therefore, we simultaneously recorded local field potentials (LFPs) in both the Pf and DS of hemiparkinsonian and control rats during epochs of rest or treadmill walking. The dopamine-lesioned rats showed increased LFP power in the beta band (12 Hz-35 Hz) in the Pf and DS during both epochs, but decreased LFP power in the delta (0.5 Hz-3 Hz) band in the Pf during rest epochs and in the DS during both epochs, compared to control rats. In addition, exaggerated low gamma (35 Hz-70 Hz) oscillations after dopamine loss were restricted to the Pf regardless of the behavioral state. Furthermore, enhanced synchronization of LFP oscillations was found between the Pf and DS after the dopamine lesion. Significant increases occurred in the mean coherence in both theta (3 Hz-7 Hz) and beta bands, and a significant increase was also noted in the phase coherence in the beta band between the Pf and DS during rest epochs. During the treadmill walking epochs, significant increases were found in both the alpha (7 Hz-12 Hz) and beta bands for two coherence measures. Collectively, dramatic changes in the relative LFP power and coherence in the thalamostriatal pathway may underlie the dysfunction of the basal ganglia-thalamocortical network circuits in PD, contributing to some of the motor and non-motor symptoms of the disease.
Animals
;
Brain Waves
;
physiology
;
Corpus Striatum
;
physiopathology
;
Cortical Synchronization
;
physiology
;
Dopaminergic Neurons
;
physiology
;
Electrocorticography
;
Male
;
Neural Pathways
;
physiopathology
;
Oxidopamine
;
Parkinsonian Disorders
;
physiopathology
;
Rats, Wistar
;
Thalamic Nuclei
;
physiopathology
;
Walking
;
physiology
7.Behavioral effects of deep brain stimulation of the anterior nucleus of thalamus, entorhinal cortex and fornix in a rat model of Alzheimer's disease.
Chao ZHANG ; Wen-Han HU ; De-Long WU ; Kai ZHANG ; Jian-Guo ZHANG ;
Chinese Medical Journal 2015;128(9):1190-1195
BACKGROUNDRecent clinical and preclinical studies have suggested that deep brain stimulation (DBS) can be used as a tool to enhance cognitive functions. The aim of the present study was to investigate the impact of DBS at three separate targets in the Papez circuit, including the anterior nucleus of thalamus (ANT), the entorhinal cortex (EC), and the fornix (FX), on cognitive behaviors in an Alzheimer's disease (AD) rat model.
METHODSForty-eight rats were subjected to an intrahippocampal injection of amyloid peptides 1-42 to induce an AD model. Rats were divided into six groups: DBS and sham DBS groups of ANT, EC, and FX. Spatial learning and memory were assessed by the Morris water maze (MWM). Recognition memory was investigated by the novel object recognition memory test (NORM). Locomotor and anxiety-related behaviors were detected by the open field test (OF). By using two-way analysis of variance (ANOVA), behavior differences between the six groups were analyzed.
RESULTSIn the MWM, the ANT, EC, and FX DBS groups performed differently in terms of the time spent in the platform zone (F(2,23) = 6.04, P < 0.01), the frequency of platform crossing (F(2,23) = 11.53, P < 0.001), and the percent time spent within the platform quadrant (F(2,23) = 6.29, P < 0.01). In the NORM, the EC and FX DBS groups spent more time with the novel object, although the ANT DBS group did not (F(2,23) = 10.03, P < 0.001). In the OF, all of the groups showed a similar total distance moved (F (1,42) = 1.14, P = 0.29) and relative time spent in the center (F(2,42) = 0.56, P = 0.58).
CONCLUSIONSOur results demonstrated that DBS of the EC and FX facilitated hippocampus-dependent spatial memory more prominently than ANT DBS. In addition, hippocampus-independent recognition memory was enhanced by EC and FX DBS. None of the targets showed side-effects of anxiety or locomotor behaviors.
Alzheimer Disease ; physiopathology ; therapy ; Animals ; Anterior Thalamic Nuclei ; physiology ; Deep Brain Stimulation ; methods ; Entorhinal Cortex ; physiology ; Fornix, Brain ; physiology ; Male ; Memory ; physiology ; Rats ; Rats, Sprague-Dawley ; Spatial Learning ; physiology
8.Effects and mechanism of low frequency stimulation of pedunculopontine nucleus on spontaneous discharges of ventrolateral thalamic nucleus in rats.
Huan LIU ; Yu-Han LIN ; Jiu-Hua CHENG ; Yue CAI ; Jin-Wen YU ; Jin MA ; Dong-Ming GAO
Acta Physiologica Sinica 2011;63(4):311-318
Parkinson's disease is a progressive neurodegenerative disorder characterized clinically by rigidity, akinesia, resting tremor and postural instability. It has recently been suggested that low frequency stimulation of the pedunculopontine nucleus (PPN) has a role in the therapy for Parkinsonism, particularly in gait disorder and postural instability. However, there is limited information about the mechanism of low frequency stimulation of the PPN on Parkinson's disease. The present study was to investigate the effect and mechanism of low frequency stimulation of the PPN on the firing rate of the ventrolateral thalamic nucleus (VL) in a rat model with unilateral 6-hydroxydopamine lesioning of the substantia nigra pars compacta. In vivo extracellular recording and microiontophoresis were adopted. The results showed that the firing rate of 60.71% VL neurons in normal rats and 59.57% VL neurons in 6-hydroxydopamine lesioned rats increased with low frequency stimulation of the PPN. Using microiontophoresis to VL neurons, we found the firing rate in VL neurons responded with either an increase or decrease in application of acetylcholine (ACh) in normal rats, whereas with a predominant decrease in M receptor antagonist atropine. Furthermore, the VL neurons were mainly inhibited by application of γ-aminobutyric acid (GABA) and excited by GABA(A) receptor antagonist bicuculline. Importantly, the VL neurons responding to ACh were also inhibited by application of GABA. We also found that the excitatory response of the VL neurons to the low frequency stimulation of the PPN was significantly reversed by microiontophoresis of atropine. These results demonstrate that cholinergic and GABAergic afferent nerve fibers may converge on the same VL neurons and they are involved in the effects of low frequency stimulation of the PPN, with ACh combining M(2) receptors on the presynaptic membrane of GABAergic afferents, which will inhibit the release of GABA in the VL and then improve the symptoms of Parkinson's disease.
Acetylcholine
;
metabolism
;
Action Potentials
;
Animals
;
Cholinergic Fibers
;
physiology
;
Electric Stimulation
;
Male
;
Oxidopamine
;
Parkinson Disease, Secondary
;
chemically induced
;
physiopathology
;
therapy
;
Pedunculopontine Tegmental Nucleus
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Ventral Thalamic Nuclei
;
physiology
9.Neuronal firing in the ventrolateral thalamus of patients with Parkinson's disease differs from that with essential tremor.
Hai CHEN ; Ping ZHUANG ; Su-hua MIAO ; Gao YUAN ; Yu-qing ZHANG ; Jian-yu LI ; Yong-jie LI
Chinese Medical Journal 2010;123(6):695-701
BACKGROUNDAlthough thalamotomy could dramatically improve both parkinsonian resting tremor and essential tremor (ET), the mechanisms are obviously different. This study aimed to investigate the neuronal activities in the ventrolateral thalamus of Parkinson's disease (PD) and ET.
METHODSThirty-six patients (PD: 20, ET: 16) were studied. Microelectrode recordings in the ventral oral posterior (Vop) and the ventral intermediate nucleus (Vim) of thalamus was performed on these patients who underwent thalamotomy. Electromyography (EMG) was recorded simultaneously on the contralateral limbs to surgery. Single unit analysis and the interspike intervals (ISIs) were measured for each neuronal type. ISI histogram and auto-correlograms were constructed to estimate the pattern of neuronal firing. Mann-Whitney test and Kruskal-Wallis (K-W) test were used to compare the mean spontaneous firing rate (MSFR) of neurons of PD and ET patients.
RESULTSThree hundred and twenty-three neurons were obtained from 20 PD trajectories, including 151 (46.7%) tremor related neuronal activity, 74 neurons (22.9%) with tonic firing, and 98 (30.4%) neurons with irregular discharge. One hundred and eighty-seven neurons were identified from 16 ET trajectories including 46 (24.6%) tremor-related neuronal activity, 77 (41.2%) neurons with tonic firing, and 64 neurons (34.2%) with irregular discharge. The analysis of MSFR of neurons with tonic firing was 26.7 (3.4 - 68.3) Hz (n = 74) and that of neurons with irregular discharge (n = 98) was 13.9 (3.0 - 58.1) Hz in PD; whereas MSFR of neurons with tonic firing (n = 77) was 48.8 (19.0 - 135.5) Hz and that of neurons with irregular discharge (n = 64) was 26.3 (8.7 - 84.7) Hz in ET. There were significant differences in the MSFR of two types of neuron for PD and ET (K-W test, both P < 0.05). Significant differences in the MSFR of neuron were also obtained from Vop and Vim of PD and ET (16.3 Hz vs. 34.8 Hz, 28.0 Hz vs. 49.9 Hz) (K-W test, both P < 0.05), respectively.
CONCLUSIONIn consistent with recent findings, the decreased MSFR of neurons observed in the Vop is likely to be involved in PD whereas the increased MSFR of neurons seen in the Vim may be a cause of ET.
Essential Tremor ; physiopathology ; Female ; Humans ; Male ; Middle Aged ; Neurons ; physiology ; Parkinson Disease ; physiopathology ; Retrospective Studies ; Ventral Thalamic Nuclei ; physiopathology
10.Neuronal firing in the globus pallidus internus and the ventrolateral thalamus related to parkinsonian motor symptoms.
Hai CHEN ; Ping ZHUANG ; Yu-qing ZHANG ; Jian-yu LI ; Yong-jie LI
Chinese Medical Journal 2009;122(19):2308-2314
BACKGROUNDIt has been proposed that parkinsonian motor signs result from hyperactivity in the output nucleus of the basal ganglia, which suppress the motor thalamus and cortical areas. This study aimed to explore the neuronal activity in the globus pallidus internus (GPi) and the ventrolateral thalamic nuclear group (ventral oral posterior/ventral intermediate, Vop/Vim) in patients with Parkinson's disease (PD).
METHODSTwenty patients with PD who underwent neurosurgery were studied. Microelectrode recording was performed in the GPi (n = 10) and the Vop/Vim (n = 10) intraoperatively. Electromyography (EMG) contralateral to the surgery was simultaneously performed. Single unit analysis was carried out. The interspike intervals (ISI) and coefficient of variation (CV) of ISI were calculated. Histograms of ISI were constructed. A unified Parkinson's disease rating scale (UPDRS) was used to assess the clinical outcome of surgery.
RESULTSThree hundred and sixty-three neurons were obtained from 20 trajectories. Of 175 GPi neurons, there were 15.4% with tremor frequency, 69.2% with tonic firing, and 15.4% with irregular discharge. Of 188 thalamic neurons, there were 46.8% with tremor frequency, 22.9% with tonic firing, and 30.3% with irregular discharge. The numbers of three patterns of neuron in GPi and Vop/Vim were significantly different (P < 0.001). ISI analysis revealed that mean firing rate of the three patterns of GPi neurons was (80.9 +/- 63.9) Hz (n = 78), which was higher than similar neurons with 62.9 Hz in a normal primate. For the Vop/Vim group, ISI revealed that mean firing rate of the three patterns of neurons (n = 95) was (23.2 +/- 17.1) Hz which was lower than similar neurons with 30 Hz in the motor thalamus of normal primates. UPDRS indicated that the clinical outcome of pallidotomy was (64.3 +/- 29.5)%, (83.4 +/- 19.1)% and (63.4 +/- 36.3)%, and clinical outcome of thalamotomy was (92.2 +/- 12.9)%, (68.0 +/- 25.2)% and (44.3 +/- 27.2)% for tremor, rigidity and bradykinesia, respectively. A significant difference of tremor and rigidity was found between GPi and Vop/Vim (P < 0.05).
CONCLUSIONSDifferent changes in neuronal firing rate and the pattern in GPi and Vop/Vim are likely responsible for parkinsonian motor signs. The results support the view that abnormal neuronal activity in GPi and Vop/Vim are involved in the pathophysiology of parkinsonism.
Adult ; Aged ; Female ; Globus Pallidus ; physiopathology ; Humans ; Male ; Middle Aged ; Neurons ; physiology ; Parkinson Disease ; physiopathology ; Ventral Thalamic Nuclei ; physiopathology

Result Analysis
Print
Save
E-mail