1.The Expression and Significance of PD-1, Th1, Th2, and Th17 Cytokines in Multiple Myeloma.
Di LIU ; Qian CHEN ; Ling LI ; Hua-Xin JIANG
Journal of Experimental Hematology 2025;33(5):1366-1373
OBJECTIVE:
To explore the expression and clinical significance of programmed death receptor 1 (PD-1), Th1, Th2, and Th17 cytokines in multiple myeloma (MM).
METHODS:
A total of 76 MM patients treated in the Tengzhou Central People's Hospital from May 2021 to May 2023 were collected as MM group, and 48 healthy individuals who underwent physical examination during the same period were included as control group. The expression of PD-1 on the surface of CD4+ and CD8+ T cells and the levels of serum Th1 cytokines [interleukin (IL) -2, interferon γ (IFN-γ), tumor necrosis factor α (TNF-α)], Th2 cytokines (IL-4, IL-6, IL-10) and Th17 cytokines (IL-17) were detected in the two groups. Spearman correlation was used to examine the relationship between PD-1, Th1, Th2 and Th17 cytokines and clinical stage and immune typing of MM patients. Multivariate logistic regression analysis was used to analyze the related factors affecting the efficacy of chemotherapy in MM patients, and the factors were tested for multicollinearity. Receiver operating characteristic (ROC) curve was drawn to analyze the predictive value of PD-1, Th1, Th2 and Th17 cytokines in chemotherapy efficacy of MM patients.
RESULTS:
The levels of CD4+T PD-1, CD8+T PD-1, IL-4, IL-6, IL-10, and IL-17 in the MM group were higher than those in the control group, while the levels of IL-2, IFN-γ, and TNF-α were lower (all P <0.001). The levels of CD4+T PD-1, CD8+T PD-1, IL-4, IL-6, IL-10, and IL-17 in R-ISS stage III patients were higher than those in stage II and I patients, and the levels in stage II patients were higher than those in stage I patients (all P <0.05). The IL-2 level in R-ISS stage III patients was lower than that in stage II and I patients, and IL-2 level in R-ISS stage II patients was lower than that in stage I patients (all P <0.05). The levels of CD4+T PD-1, CD8+T PD-1, IL-4, IL-6, IL-10, and IL-17 in IgG patients were higher than those in IgA, light chain, and non secretory patients, while the level of IL-2 was lower (all P <0.05). Correlation analysis showed that CD4+T PD-1, CD8+T PD-1, IL-4, IL-6, IL-10, and IL-17 were positively correlated with R-ISS staging in MM patients (r =0.623, 0.635, 0.728, 0.330, 0.742, 0.412), and negatively correlated with immune classification (r =-0.664, -0.756, -0.642, -0.479, -0.613, -0.323). IL-2 was negatively correlated with R-ISS staging in MM patients (r =-0.280), and positively correlated with immune classification (r =0.483). The levels of CD4+T PD-1, CD8+T PD-1, IL-4, IL-6, IL-10, and IL-17 in the non-remission group were higher than those in the remission group, while the level of IL-2 was lower (all P <0.001). Multivariate logistic regression analysis showed that the increased CD4+T PD-1, CD8+T PD-1, IL-4, IL-6, IL-10 and IL-17 were risk factors for the efficacy of chemotherapy in MM patients (OR >1, P <0.05), while the increased IL-2 was a protective factor (OR < 1, P <0.05). The results of multicollinearity test showed that the tolerance of the seven factors included was between 0.714-0.885, and the variance inflation factor was between 1.130-1.400. There was no multicollinearity. The ROC curve analysis results showed that the area under the curve for the combined prediction of chemotherapy efficacy in MM patients by the above 7 factors was 0.942, with specificity of 0.741 and sensitivity of 0.909.
CONCLUSION
The expression levels of PD-1 on the surface of CD4+ and CD8+ T cells and serum Th2 and Th17 cytokines in MM patients are high, while Th1 cytokines are low. PD-1, Th1, Th2, and Th17 cytokines are related to clinical stage and immune classification of MM patients. The combined detection of these indicators can help predict the chemotherapy efficacy of MM patients.
Humans
;
Programmed Cell Death 1 Receptor/metabolism*
;
Multiple Myeloma/blood*
;
Cytokines/metabolism*
;
Th17 Cells/metabolism*
;
Th1 Cells/metabolism*
;
Th2 Cells/metabolism*
;
Female
;
Male
;
Interleukin-10
;
Interferon-gamma
;
Middle Aged
;
Interleukin-17
;
Interleukin-2
;
Interleukin-4
;
Tumor Necrosis Factor-alpha
;
Interleukin-6
;
Aged
2.Effect of formononetin on inflammation and immunity in autoimmune prostatitis: An exploration based on JAK/STAT signaling pathways.
Quan-Yao YU ; Jian-Ming SUN ; Shi-Jia LIANG ; Jian-Min MAO
National Journal of Andrology 2025;31(3):208-215
OBJECTIVE:
To investigate the action mechanism of formononetin (FN) in regulating T helper type 1 (Th1) cell differentiation and macrophage polarization through JAK/STAT signaling pathways in a mouse model of experimental autoimmune prostatitis (EAP).
METHODS:
Forty non-obese diabetic (NOD) male mice were randomly divided into four groups: normal control, EAP model control, low-dose FN (LFN, 50 mg/kg) and high-dose FN (HFN, 100 mg/kg). The EAP model was established in the latter three groups by subcutaneous injection of prostate antigens (PAgs) combined with complete Freund's adjuvant (CFA). After modeling, the mice in the LFN and HFN groups were treated intragastrically with FN at 50 and 100 mg/kg/d, respectively, and those in the normal and model controls groups with carboxymethylcellulose sodium (CMC-Na). At 42 days after treatment, all the animals were killed and relevant tissues collected for observation of the pathological changes in the prostate tissue by HE staining, detection of Th1 cell differentiation and macrophage polarization in the prostate by immunofluorescence double staining (labeling CD4 and interferon-γ [IFN-γ], inducible nitric oxide synthase [iNOS] and CD206), measurement of the ratio of Th1 cells/macrophages in the spleen by flow cytometry and the levels of IFN-γ and tumor necrosis factor-α (TNF-α) in the serum by ELISA, and determination of the expressions of phosphorylated (p)-Janus kinase (JAK)1, JAK1, p-JAK2, JAK2, p-signal transducer and activator of transcription (STAT1) in the prostate tissue by Western blot.
RESULTS:
Compared with the model controls, the mice treated with low- and high-dose FN exhibited more orderly arrangement of glandular epithelial cells, significantly reduced prostatic tissue inflammation scores (P<0.05), and decreased proportion of Th1 cells and expression of M1 macrophages (P<0.05), but increased expression of M2 macrophages in the prostate and spleen tissues (P<0.05). Besides, the levels of inflammatory cytokines IFN-γ (P<0.05) and TNF-α (P<0.05) in the serum of the mice in the LFN and HFN groups were remarkably reduced, and so were the ratios of p-JAK1/JAK1, p-JAK2/JAK2 and p-STAT1/STAT1 in the prostate tissues at the molecular level (P<0.05), indicating the therapeutic effect of FN on EAP by regulating JAK/STAT signaling pathways, promoting inflammation resolution, and restoring immune balance.
CONCLUSION
FN alleviates EAP by inhibiting JAK/STAT signaling pathways and regulating Th1 cell differentiation and macrophage polarization.
Animals
;
Male
;
Prostatitis/metabolism*
;
Signal Transduction
;
Mice
;
Isoflavones/therapeutic use*
;
Mice, Inbred NOD
;
Autoimmune Diseases/metabolism*
;
Macrophages
;
Inflammation
;
Th1 Cells
;
Janus Kinases/metabolism*
;
Cell Differentiation
;
Disease Models, Animal
;
STAT Transcription Factors/metabolism*
3.The mechanism and research progress of T lymphocyte-mediated immune response in cardiac fibrosis remodeling.
Yong PENG ; Wen-Yue GAO ; Di QIN
Acta Physiologica Sinica 2025;77(1):95-106
This article reviews the role of different types of T lymphocyte subpopulations in pathological cardiac fibrosis remodeling. T helper 17 (Th17) cells are implicated in promoting the development of pathological cardiac fibrosis remodeling, while regulatory T (Treg) cells exert an immunosuppressive functions as negative regulators, attributing to their interleukin-10 (IL-10) secretion and functional phenotype. Th1 and Th2 cells are involved in different stages of the inflammatory response in pathological cardiac fibrosis remodeling, and their influence varies according to the pathological mechanisms of different cardiac diseases. In addition, CD8+ T cells regulate the activation and polarization of macrophages, promote the secretion of granzyme B, induce cardiomyocyte apoptosis, and aggravate cardiac fibrosis post-myocardial infarction. Considering the limitation of cytokine modulation in clinical therapy of heart failure, targeting T-cell co-stimulatory molecules emerges as a promising strategy for treating pathologic cardiac remodeling. Future research will explore chimeric antigen receptor modified T cells (CAR-T cells) technology and targeted regulation of Treg cells quantity and phenotype, for both of which have the potential to become effective methods for treating heart disease.
Humans
;
Fibrosis
;
T-Lymphocytes, Regulatory/immunology*
;
Ventricular Remodeling/immunology*
;
Myocardium/immunology*
;
Animals
;
Th17 Cells/immunology*
;
Interleukin-10/metabolism*
;
Th1 Cells/immunology*
;
Th2 Cells/immunology*
4.Advances in role and mechanism of traditional Chinese medicine active ingredients in regulating balance of Th1/Th2 and Th17/Treg immune responses in asthma patients.
Ya-Sheng DENG ; Lan-Hua XI ; Yan-Ping FAN ; Wen-Yue LI ; Yong-Hui LIU ; Zhao-Bing NI ; Ming-Chan WEI ; Jiang LIN
China Journal of Chinese Materia Medica 2025;50(4):1000-1021
Asthma is a chronic inflammatory disease involving multiple inflammatory cells and cytokines. Its pathogenesis is complex, involving various cells and cytokines. Traditional Chinese medicine(TCM) theory suggests that the pathogenesis of asthma is closely related to the dysfunction of internal organs such as the lungs, spleen, and kidneys. In contrast, modern immunological studies have revealed the central role of T helper 1(Th1)/T helper 2(Th2) and T helper 17(Th17)/regulatory T(Treg) cellular immune imbalance in the pathogenesis of asthma. Th1/Th2 imbalance is manifested as hyperfunction of Th2 cells, which promotes the synthesis of immunoglobulin E(IgE) and the activation of eosinophil granulocytes, leading to airway hyperresponsiveness and inflammation.Meanwhile, Th17/Treg imbalance exacerbates the inflammatory response in the airways, further contributing to asthma pathology.Currently, therapeutic strategies for asthma are actively exploring potential targets for regulating the balance of Th1/Th2 and Th17/Treg immune responses. These targets include cytokines, transcription factors, key proteins, and non-coding RNAs. Precisely regulating the expression and function of these targets can effectively modulate the activation and differentiation of immune cells. In recent years,traditional Chinese medicine active ingredients have shown unique potential and prospects in the field of asthma treatment. Based on this, the present study systematically summarizes the efficacy and specific mechanisms of TCM active ingredients in treating asthma by regulating Th1/Th2 and Th17/Treg immune balance through literature review and analysis. These active ingredients, including flavonoids, terpenoids, polysaccharides, alkaloids, and phenolic acids, exert their effects through various mechanisms, such as inhibiting the activation of inflammatory cells, reducing the release of cytokines, and promoting the normal differentiation of immune cells. This study aims to provide a solid foundation for the widespread application and in-depth development of TCM in asthma treatment and to offer new ideas for clinical research and drug development of asthma.
Asthma/genetics*
;
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Th2 Cells/drug effects*
;
Th17 Cells/drug effects*
;
T-Lymphocytes, Regulatory/drug effects*
;
Th1 Cells/drug effects*
;
Animals
;
Cytokines/immunology*
;
Medicine, Chinese Traditional
5.TREM-2 Drives Development of Multiple Sclerosis by Promoting Pathogenic Th17 Polarization.
Siying QU ; Shengfeng HU ; Huiting XU ; Yongjian WU ; Siqi MING ; Xiaoxia ZHAN ; Cheng WANG ; Xi HUANG
Neuroscience Bulletin 2024;40(1):17-34
Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease, mediated by pathogenic T helper 17 (Th17) cells. However, the therapeutic effect is accompanied by the fluctuation of the proportion and function of Th17 cells, which prompted us to find the key regulator of Th17 differentiation in MS. Here, we demonstrated that the triggering receptor expressed on myeloid cells 2 (TREM-2), a modulator of pattern recognition receptors on innate immune cells, was highly expressed on pathogenic CD4-positive T lymphocyte (CD4+ T) cells in both patients with MS and experimental autoimmune encephalomyelitis (EAE) mouse models. Conditional knockout of Trem-2 in CD4+ T cells significantly alleviated the disease activity and reduced Th17 cell infiltration, activation, differentiation, and inflammatory cytokine production and secretion in EAE mice. Furthermore, with Trem-2 knockout in vivo experiments and in vitro inhibitor assays, the TREM-2/zeta-chain associated protein kinase 70 (ZAP70)/signal transducer and activator of transcription 3 (STAT3) signal axis was essential for Th17 activation and differentiation in EAE progression. In conclusion, TREM-2 is a key regulator of pathogenic Th17 in EAE mice, and this sheds new light on the potential of this therapeutic target for MS.
Animals
;
Humans
;
Mice
;
CD4-Positive T-Lymphocytes/pathology*
;
Cell Differentiation
;
Encephalomyelitis, Autoimmune, Experimental/metabolism*
;
Mice, Inbred C57BL
;
Multiple Sclerosis
;
Th1 Cells/pathology*
6.Functions of nucleolar complex associated 4 homolog in activated T cells.
Jiajun YIN ; Jie GUO ; Jianhua ZHANG
Chinese Journal of Biotechnology 2024;40(11):4057-4070
Nucleolar complex associated 4 homolog (NOC4L) is a key factor in ribosome biogenesis, and this study aims to investigate its roles in activated T cells from the perspective of translation regulation. Firstly, flow cytometry was employed to determine the expression levels of NOC4L in the CD4+ T cells under different conditions in the transgenic reporter mice expressing Noc4lmCherry. Subsequently, the expression of NOC4L along with cell proliferation was examined under Th1 and Th17 polarization conditions. Finally, in vitro experiments were conducted to identify the proteins interacting with NOC4L during the activation of Th1 and Th17 cells, on the basis of which the potential mechanisms of NOC4L were explored. The results showed that the expression level of NOC4L increased in activated CD4+ T cells, and the expression of NOC4L was closely associated with the proliferation and division of activated T cells. The in vitro experiments revealed interactions between NOC4L and proteins involved in ribosome assembly and cell proliferation during T cell activation. These findings lay a foundation for probing into the post-transcriptional regulation in helper T cells and hold profound significance for understanding the activation and regulatory mechanisms of T cells.
Animals
;
Mice
;
Lymphocyte Activation
;
Cell Proliferation
;
Mice, Transgenic
;
Nuclear Proteins/genetics*
;
Th1 Cells/immunology*
;
Th17 Cells/metabolism*
;
CD4-Positive T-Lymphocytes/immunology*
;
Ribosomes/metabolism*
7.Transcriptomic differences between the spleens of mice immunized with inactivated antigens of foot-and-mouth disease virus and Senecavirus A.
Zixuan ZHENG ; Xueqing MA ; Kun LI ; Pu SUN ; Shulun HUANG ; Kaiheng DONG ; Qiongqiong ZHAO ; Zengjun LU ; Ping QIAN
Chinese Journal of Biotechnology 2024;40(12):4493-4508
The aim of this study was to compare the immune responses of C57BL/6 mice immunized with two pathogens, foot-and-mouth disease virus (FMDV) and Senecavirus A (SVA), and to provide clues for revealing the regulatory mechanisms of acquired immunity. Inactivated and purified FMDV and SVA antigens were used to immunize C57BL/6 mice respectively, and the mice immunized with PBS were taken as the control. The percentages of Th1 and Th2 cells in the spleen lymphocytes of mice in each group were analyzed by flow cytometry at 14 and 28 days after immunization. RNA-Seq was performed for the spleen. Mouse macrophages were stimulated with the antigens in vitro to examine the expression of the differentially expressed genes (DEGs) screened out. The results showed that 14 days after immunization, there was no significant difference in the magnitude of the Th1/Th2 immune response elicited by the FMDV and SVA antigens. After 28 days, the magnitudes of the Th1 and Th2 immune responses elicited by the SVA antigen were higher than those elicited by the FMDV antigen. RNA-Seq revealed two common DEGs, Rsad2 and Tspan8, between the two immunization groups, which indicated that the two genes may be involved in the activation of the Th1/Th2 immune responses by FMDV and SVA antigens. FMDV and SVA antigens stimulated macrophages to secrete interleukin (IL)-12 and IL-33 in vitro, and the expression of Tspan8 and Rsad2 was consistent with the RNA-Seq results. The expression of Rsad2 was regulated by type I interferons (IFNα, IFNβ). In this study, we obtained the DEGs involved in the immune responses to the two antigens in mouse spleen, which provides a molecular basis for investigating the immune response mechanisms induced by FMDV and SVA.
Animals
;
Foot-and-Mouth Disease Virus/genetics*
;
Mice
;
Spleen/cytology*
;
Mice, Inbred C57BL
;
Antigens, Viral/genetics*
;
Transcriptome
;
Th1 Cells/immunology*
;
Immunization
;
Viral Vaccines/immunology*
;
Th2 Cells/immunology*
;
Foot-and-Mouth Disease/immunology*
;
Interleukin-33/genetics*
;
Female
;
Macrophages/immunology*
;
Picornaviridae
8.Significance of Tim-3 and Its Ligand Galectin-9 in Th1/Th2 Imbalance in Patients with Multiple Myeloma.
Rui ZHANG ; Shuang CHEN ; Ting-Ting LUO ; Jian-Hua QU
Journal of Experimental Hematology 2023;31(6):1764-1770
OBJECTIVE:
To investigate the significance of Tim-3 and Galectin-9 in Th1/Th2 imbalance in patients with multiple myeloma (MM).
METHODS:
55 newly diagnosed MM patients and 20 healthy controls were included. Flow cytometry was used to detect the expression of Tim-3 on CD4+T cells, the proportion of Th1, Th2, Tim-3+Th1 and Tim-3+Th2 cells in peripheral blood. ELISA was used to detect the levels of cytokines IFN-γ and IL-4 in serum, and PCR was used to detect the level of Galectin-9 mRNA. Then the correlations between Galectin-9 mRNA expression and Th-cell subsets and related cytokine levels, as well as the relationship between Tim-3+Th1/Tim-3+Th2 ratio and corresponding clinical features were analyzed.
RESULTS:
Compared with the control group, the expression of Tim-3 on CD4+T cells in peripheral blood of MM patients was significantly increased (P<0.05), the proportions of Tim-3+Th1 cells, Tim-3+Th2 cells and Tim-3+Th1/Tim-3+Th2 ratio in MM patients were also increased (P<0.05), while the proportion of Th1 cells and Th1/Th2 ratio in MM patients were significantly decreased (P<0.05). The level of cytokine IFN-γ and IFN-γ/IL-4 ratio in MM patients were significantly decreased (P<0.05), while the level of cytokine IL-4 was increased (P<0.05). The mRNA levels of Galectin-9 in MM patients were significantly increased (P<0.05). The levels of Galectin-9 mRNA were positively correlated with Tim-3+CD4+T cells (r=0.663), Tim-3+Th2 cells (r=0.492) and IL-4 (r=0.470), while negatively correlated with IFN-γ (r=-0.593). The ratios of Tim-3+Th1/Tim-3+Th2 in MM patients were positively correlated with ISS stage (r=0.511), osteolytic damage (r=0.556) and chromosome abnormality (r=0.632).
CONCLUSION
These results suggest that Tim-3 and Galectin-9 are involved in Th1/Th2 imbalance in MM patients, and the high ratio of Tim-3+Th1/Tim-3+Th2 is associated with poor clinical prognosis.
Humans
;
Cytokines/metabolism*
;
Galectins/metabolism*
;
Hepatitis A Virus Cellular Receptor 2/metabolism*
;
Interleukin-4/metabolism*
;
Ligands
;
Multiple Myeloma/metabolism*
;
RNA, Messenger/metabolism*
;
Th1 Cells/metabolism*
;
Th2 Cells/metabolism*
9.Regulating the immune response to carbon tetrachloride-induced liver fibrosis in mice by blocking inducible co-stimulatory molecules and interleukin-33.
Bo WANG ; Wen Na LI ; Xin LI ; Hui Yan LI ; Yue Tong CHEN ; Yuan LI ; Hai Tao DING
Chinese Journal of Hepatology 2023;31(5):504-508
Objective: To investigate the effects of combined blockade of interleukin-33 (IL-33) and inducible co-stimulatory molecule (ICOS) on carbon tetrachloride-induced chronic liver fibrosis and imbalance of T helper lymphocyte subsets in mice. Methods: There were 40 BALB/c mice in each model and control group. Flow cytometry was used to determine the proportion of Th1/Th2/Th17 cells in the splenic lymphocyte suspension of mice, the expression levels of interferon γ, IL-4, and IL-17 in the splenic lymphocyte suspension of liver fibrosis mice after combined blockade of IL-33 and ICOS, and the pathological changes of liver histopathology in mice with liver fibrosis. Two independent sample t-test was used to compare data between groups. Results: Compared with the non-blocking group, the proportion of Th2 and Th17 cells in the IL-33/ICOS blocking group was significantly down-regulated (Th2: 65.96% ± 6.04% vs. 49.09% ± 7.03%; Th17: 19.17% ± 4.03% vs. 9.56% ± 2.03%), while the proportion of Th1 cells and Th1/Th2 ratio were up-regulated (Th1: 17.14% ± 3.02% vs. 31.93% ± 5.02%; Th1/Th2: 0.28 ± 0.06 vs. 0.62 ± 0.23), and the difference was statistically significant (t = 5.15, 6.03, 7.14, 4.28, respectively, with P < 0.05). After entering the chronic inflammation stage of liver fibrosis in mice (10 weeks), compared with the non-blocking group, the expression levels of IL-4 and IL-17 in the blockade group were significantly down-regulated [IL-4: (84.75 ± 14.35) pg/ ml vs. (77.88 ± 19.61) pg/ml; IL-17: (72.38 ± 15.13) pg/ml vs. (36.38 ± 8.65) pg/ml], while the expression of interferon γ was up-regulated [(37.25 ± 11.51) pg/ml vs. (77.88 ± 19.61) pg/ml], and the difference was statistically significant (t: IL-4: 4.71; IL-17: 5.84; interferon γ: 5.05, respectively, with P < 0.05). Liver histopathological results showed that hepatic necrosis, hepatic lobular structural disorder, and fibrous tissue hyperplasia were significantly lower in the blockade group than those in the non-blocking group at 13 weeks of liver fibrosis. Conclusion: Combined blockade of the ICOS signaling pathway and IL-33 can regulate Th2 and Th17 polarization, down-regulate the inflammatory response, and inhibit or prevent the occurrence and progression of fibrosis.
Mice
;
Animals
;
Interferon-gamma/metabolism*
;
Interleukin-17/metabolism*
;
Interleukin-33/metabolism*
;
Cytokines/metabolism*
;
Carbon Tetrachloride
;
Th2 Cells
;
Interleukin-4/metabolism*
;
Liver Cirrhosis/pathology*
;
Th1 Cells
;
Th17 Cells/pathology*
;
Immunity
10.Grape Seed Extract Attenuates Demyelination in Experimental Autoimmune Encephalomyelitis Mice by Inhibiting Inflammatory Response of Immune Cells.
Qing WANG ; Yang-Yang CHEN ; Zhi-Chao YANG ; Hai-Jun YUAN ; Yi-Wei DONG ; Qiang MIAO ; Yan-Qing LI ; Jing WANG ; Jie-Zhong YU ; Bao-Guo XIAO ; Cun-Gen MA
Chinese journal of integrative medicine 2023;29(5):394-404
OBJECTIVE:
To examine the anti-inflammatory effect of grape seed extract (GSE) in animal and cellular models and explore its mechanism of action.
METHODS:
This study determined the inhibitory effect of GSE on macrophage inflammation and Th1 and Th17 polarization in vitro. Based on the in vitro results, the effects and mechanisms of GSE on multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE) mice model were further explored. The C57BL/6 mice were intragastrically administered with 50 mg/kg of GSE once a day from the 3rd day to the 27th day after immunization. The activation of microglia, the polarization of Th1 and Th17 and the inflammatory factors such as tumor necrosis factor- α (TNF- α), interleukin-1 β (IL-1 β), IL-6, IL-12, IL-17 and interferon-γ (IFN-γ) secreted by them were detected in vitro and in vivo by flow cytometry, enzyme linked immunosorbent assay (ELISA), immunofluorescence staining and Western blot, respectively.
RESULTS:
GSE reduced the secretion of TNF-α, IL-1 β and IL-6 in bone marrow-derived macrophages stimulated by lipopolysaccharide (P<0.01), inhibited the secretion of TNF-α, IL-1 β, IL-6, IL-12, IL-17 and IFN-γ in spleen cells of EAE mice immunized for 9 days (P<0.05 or P<0.01), and reduced the differentiation of Th1 and Th17 mediated by CD3 and CD28 factors (P<0.01). GSE significantly improved the clinical symptoms of EAE mice, and inhibited spinal cord demyelination and inflammatory cell infiltration. Peripherally, GSE downregulated the expression of toll-like-receptor 4 (TLR4) and Rho-associated kinase (ROCKII, P<0.05 or P<0.01), and inhibited the secretion of inflammatory factors (P<0.01 or P<0.05). In the central nervous system, GSE inhibited the infiltration of CD45+CD11b+ and CD45+CD4+ cells, and weakened the differentiation of Th1 and Th17 (P<0.05). Moreover, it reduced the secretion of inflammatory factors (P<0.01), and prevented the activation of microglia (P<0.05).
CONCLUSION
GSE had a beneficial effect on the pathogenesis and progression of EAE by inhibiting inflammatory response as a potential drug and strategy for the treatment of MS.
Mice
;
Animals
;
Encephalomyelitis, Autoimmune, Experimental/pathology*
;
Grape Seed Extract/therapeutic use*
;
Interleukin-17
;
Interleukin-1beta
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Th1 Cells
;
Mice, Inbred C57BL
;
Interferon-gamma/therapeutic use*
;
Th17 Cells/metabolism*
;
Interleukin-12/therapeutic use*
;
Cytokines/metabolism*

Result Analysis
Print
Save
E-mail