1.Chinese Expert Consensus on Assessment and Clinical Application of Tertiary Lymphoid Structure for Non-small Cell Lung Cancer (2025 Version).
Chinese Journal of Lung Cancer 2025;28(2):95-104
The tertiary lymphoid structure (TLS) plays a crucial role in the tumor microenvironment, influencing tumor development and progression. As an emerging biomarker for predicting the prognosis and treatment response in cancer patients, TLS has received increasing attention. However, there is currently a lack of standardized evaluation criteria for TLS, and significant differences exist in TLS across different tumor tissues. This poses challenges for the clinical application of this biomarker in translation. To meet the clinical diagnosis and treatment needs of non-small cell lung cancer (NSCLC), this consensus focuses on the definition, clinical significance, testing components, and assessment methods of TLS in NSCLC. Combining relevant research and Chinese clinical practice, it provides standardized and normalized suggestions for the clinical assessment and application of TLS, so as to improve the understanding of TLS among clinicians and pathologists, and provide a reference basis for the clinical application of the detection of TLS in NSCLC.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/immunology*
;
Lung Neoplasms/immunology*
;
Tertiary Lymphoid Structures/immunology*
;
Consensus
;
China
;
East Asian People
2.Increased Tertiary Lymphoid Structures are Associated with Exaggerated Lung Tissue Damage in Smokers with Pulmonary Tuberculosis.
Yue ZHANG ; Liang LI ; Zi Kang SHENG ; Ya Fei RAO ; Xiang ZHU ; Yu PANG ; Meng Qiu GAO ; Xiao Yan GAI ; Yong Chang SUN
Biomedical and Environmental Sciences 2025;38(7):810-818
OBJECTIVE:
Cigarette smoking exacerbates the progression of pulmonary tuberculosis (TB). The role of tertiary lymphoid structures (TLS) in chronic lung diseases has gained attention; however, it remains unclear whether smoking-exacerbated lung damage in TB is associated with TLS. This study aimed to analyze the characteristics of pulmonary TLS in smokers with TB and to explore the possible role of TLS in smoking-related lung injury in TB.
METHODS:
Lung tissues from 36 male patients (18 smokers and 18 non-smokers) who underwent surgical resection for pulmonary TB were included in this study. Pathological and immunohistological analyses were conducted to evaluate the quantity of TLS, and chest computed tomography (CT) was used to assess the severity of lung lesions. The correlation between the TLS quantity and TB lesion severity scores was analyzed. The immune cells and chemokines involved in TLS formation were also evaluated and compared between smokers and non-smokers.
RESULTS:
Smoker patients with TB had significantly higher TLS than non-smokers ( P < 0.001). The TLS quantity in both the lung parenchyma and peribronchial regions correlated with TB lesion severity on chest CT (parenchyma: r = 0.5767; peribronchial: r = 0.7373; both P < 0.001). Immunohistochemical analysis showed increased B cells, T cells, and C-X-C motif chemokine ligand 13 (CXCL13) expression in smoker patients with TB ( P < 0.001).
CONCLUSION
Smoker TB patients exhibited increased pulmonary TLS, which was associated with exacerbated lung lesions on chest CT, suggesting that cigarette smoking may exacerbate lung damage by promoting TLS formation.
Humans
;
Male
;
Tuberculosis, Pulmonary/immunology*
;
Middle Aged
;
Tertiary Lymphoid Structures/pathology*
;
Adult
;
Lung/pathology*
;
Smoking/adverse effects*
;
Smokers
;
Aged
;
Tomography, X-Ray Computed

Result Analysis
Print
Save
E-mail