1.Optical coherence tomography of the macular ganglion cell complex demonstrating transsynaptic retrograde degeneration from a temporal lobe tumor: A case report
Jian Carlo R. Narag ; Franz Marie O. Cruz
Acta Medica Philippina 2025;59(10):119-124
We report a 39-year-old male who had generalized tonic-clonic seizure with loss of awareness. Investigations led to a diagnosis of a left temporal lobe tumor. He underwent resection of the mass with consequent loss of brain tissue in the temporal lobe and was found to have a complete right homonymous hemianopia in the immediate postoperative period. Macular ganglion cell analysis on optical coherence tomography (OCT) showed homonymous thinning affecting the inferonasal sector in the right eye and inferotemporal sector in the left eye. This case demonstrates transsynaptic retrograde degeneration through the interruption of the inferior optic radiation, and its corresponding effect on the structure and function of the affected retinal field. Temporal lobe lesions may cause not only a homonymous visual f ield defect contralateral to the side of the lesion but also result to homonymous sectoral thinning of the macular ganglion cell complexes in both eyes located ipsilateral to the side of the lesion.
Human ; Male ; Adult: 25-44 Yrs Old ; Retinal Ganglion Cells ; Hemianopsia ; Temporal Lobe
2.Optical coherence tomography of the macular ganglion cell complex demonstrating transsynaptic retrograde degeneration from a temporal lobe tumor: A case report
Jian Carlo R. Narag ; Franz Marie O. Cruz
Acta Medica Philippina 2024;58(Early Access 2024):1-6
We report a 39-year-old male who had generalized tonic-clonic seizure with loss of awareness. Investigations led to a diagnosis of a left temporal lobe tumor. He underwent resection of the mass with consequent loss of brain tissue in the temporal lobe and was found to have a complete right homonymous hemianopia in the immediate postoperative period. Macular ganglion cell analysis on optical coherence tomography (OCT) showed homonymous thinning affecting the inferonasal sector in the right eye and inferotemporal sector in the left eye. This case demonstrates transsynaptic retrograde degeneration through the interruption of the inferior optic radiation, and its corresponding effect on the structure and function of the affected retinal field. Temporal lobe lesions may cause not only a homonymous visual f ield defect contralateral to the side of the lesion but also result to homonymous sectoral thinning of the macular ganglion cell complexes in both eyes located ipsilateral to the side of the lesion.
Human
;
retinal ganglion cells
;
hemianopsia
;
temporal lobe
4.Spatial Distribution of Parvalbumin-Positive Fibers in the Mouse Brain and Their Alterations in Mouse Models of Temporal Lobe Epilepsy and Parkinson's Disease.
Changgeng SONG ; Yan ZHAO ; Jiajia ZHANG ; Ziyi DONG ; Xin KANG ; Yuqi PAN ; Jinle DU ; Yiting GAO ; Haifeng ZHANG ; Ye XI ; Hui DING ; Fang KUANG ; Wenting WANG ; Ceng LUO ; Zhengping ZHANG ; Qinpeng ZHAO ; Jiazhou YANG ; Wen JIANG ; Shengxi WU ; Fang GAO
Neuroscience Bulletin 2023;39(11):1683-1702
Parvalbumin interneurons belong to the major types of GABAergic interneurons. Although the distribution and pathological alterations of parvalbumin interneuron somata have been widely studied, the distribution and vulnerability of the neurites and fibers extending from parvalbumin interneurons have not been detailly interrogated. Through the Cre recombinase-reporter system, we visualized parvalbumin-positive fibers and thoroughly investigated their spatial distribution in the mouse brain. We found that parvalbumin fibers are widely distributed in the brain with specific morphological characteristics in different regions, among which the cortex and thalamus exhibited the most intense parvalbumin signals. In regions such as the striatum and optic tract, even long-range thick parvalbumin projections were detected. Furthermore, in mouse models of temporal lobe epilepsy and Parkinson's disease, parvalbumin fibers suffered both massive and subtle morphological alterations. Our study provides an overview of parvalbumin fibers in the brain and emphasizes the potential pathological implications of parvalbumin fiber alterations.
Mice
;
Animals
;
Epilepsy, Temporal Lobe/pathology*
;
Parvalbumins/metabolism*
;
Parkinson Disease/pathology*
;
Neurons/metabolism*
;
Interneurons/physiology*
;
Disease Models, Animal
;
Brain/pathology*
5.Clinicopathological and molecular features of multinodular and vacuolating neuronal tumors of the cerebrum.
Wei WANG ; Wen Li ZHAO ; Xue Fei WEN ; Wen Zhi CUI ; Dan Li YE ; Guang Ning YAN ; Geng CHEN
Chinese Journal of Pathology 2022;51(11):1129-1134
Objective: To investigate clinicopathological features of multinodular and vacuolar neurodegenerative tumor (MVNT) of the cerebrum, and to investigate its immunophenotype, molecular characteristics and prognosis. Methods: Four cases were collected at the General Hospital of Southern Theater Command, Guangzhou, China and one case was collected at the First People's Hospital of Huizhou, China from 2013 to 2021. Clinical, histological, immunohistochemical and molecular characteristics of these five cases were analyzed. Follow-up was carried out to evaluate their prognoses. Results: There were four females and one male, with an average age of 42 years (range, 17 to 51 years). Four patients presented with seizures, while one presented with discomfort on the head. Pre-operative imaging demonstrated non-enhancing, T2-hyperintense multinodular lesions in the deep cortex and superficial white matter of the frontal (n=1) or temporal lobes (n=4). Microscopically, the tumor cells were mostly arranged in discrete and coalescent nodules primarily within the deep cortical ribbon and superficial subcortical white matter. The tumors were composed of large cells with ganglionic morphology, vesicular nuclei, prominent nucleoli and amphophilic or lightly basophilic cytoplasm. They exhibited varying degrees of matrix vacuolization. Vacuolated tumor cells did not show overt cellular atypia or any mitotic activities. Immunohistochemically, tumor cells exhibited widespread nuclear staining for the HuC/HuD neuronal antigens, SOX10 and Olig2. Expression of other neuronal markers, including synaptophysin, neurofilament and MAP2, was patchy to absent. The tumor cells were negative for NeuN, GFAP, p53, H3K27M, IDH1 R132H, ATRX, BRG1, INI1 and BRAF V600E. No aberrant molecular changes were identified in case 3 and case 5 using next-generation sequencing (including 131 genes related to diagnosis and prognosis of central nervous system tumors). All patients underwent complete or substantial tumor excision without adjuvant chemoradiotherapy. Post-operative follow-up information over intervals of 6 months to 8 years was available for five patients. All patients were free of recurrence. Conclusions: MVNT is an indolent tumor, mostly affecting adults, which supports classifying MVNT as WHO grade 1. There is no tumor recurrence even in the patients treated with subtotal surgical excision. MVNTs may be considered for observation or non-surgical treatments if they are asymptomatic.
Adult
;
Female
;
Humans
;
Male
;
Brain Neoplasms/pathology*
;
Cerebrum/pathology*
;
Neurons/metabolism*
;
Seizures
;
Temporal Lobe/pathology*
;
Biomarkers, Tumor/metabolism*
6.Research progress in the treatment of refractory temporal lobe epilepsy based on stereotactic-electroencephalogram.
Wen Jie YIN ; Xiao Qiang WANG ; Cheng Long LI ; Ming Rui ZHAO ; Xin Ding ZHANG
Chinese Journal of Surgery 2022;60(9):876-880
Temporal lobe epilepsy, with a variety of etiological, symptomatic, electrophysiological characteristics, has the highest incidence among all focal epilepsy, and a high rate of progression to refractory epilepsy. Surgery is an effective treatment, but traditional methods are usually difficult to accurately locate the epileptogenic zone, which may be resolved by stereotactic-electroencephalogram(SEEG) technique. Radiofrequency thermocoagulation and MRI-guided laser interstitial thermal therapy based on SEEG provide a new accurate and minimally invasive choice for refractory epilepsy patients with high surgical risk and difficulty.
Drug Resistant Epilepsy/surgery*
;
Electrocoagulation/methods*
;
Electroencephalography
;
Epilepsy, Temporal Lobe/surgery*
;
Humans
;
Stereotaxic Techniques
7.Anterior thalamic nuclei deep brain stimulation inhibits mossy fiber sprouting via 3',5'-cyclic adenosine monophosphate/protein kinase A signaling pathway in a chronic epileptic monkey model.
Ting-Ting DU ; Ying-Chuan CHEN ; Guan-Yu ZHU ; De-Feng LIU ; Yu-Ye LIU ; Tian-Shuo YUAN ; Xin ZHANG ; Jian-Guo ZHANG
Chinese Medical Journal 2021;134(3):326-333
BACKGROUND:
Anterior thalamic nuclei (ATN) deep brain stimulation (DBS) is an effective method of controlling epilepsy, especially temporal lobe epilepsy. Mossy fiber sprouting (MFS) plays an indispensable role in the pathogenesis and progression of epilepsy, but the effect of ATN-DBS on MFS in the chronic stage of epilepsy and the potential underlying mechanisms are unknown. This study aimed to investigate the effect of ATN-DBS on MFS, as well as potential signaling pathways by a kainic acid (KA)-induced epileptic model.
METHODS:
Twenty-four rhesus monkeys were randomly assigned to control, epilepsy (EP), EP-sham-DBS, and EP-DBS groups. KA was injected to establish the chronic epileptic model. The left ATN was implanted with a DBS lead and stimulated for 8 weeks. Enzyme-linked immunosorbent assay, Western blotting, and immunofluorescence staining were used to evaluate MFS and levels of potential molecular mediators in the hippocampus. One-way analysis of variance, followed by the Tukey post hoc correction, was used to analyze the statistical significance of differences among multiple groups.
RESULTS:
ATN-DBS is found to significantly reduce seizure frequency in the chronic stage of epilepsy. The number of ectopic granule cells was reduced in monkeys that received ATN stimulation (P < 0.0001). Levels of 3',5'-cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in the hippocampus, together with Akt phosphorylation, were noticeably reduced in monkeys that received ATN stimulation (P = 0.0030 and P = 0.0001, respectively). ATN-DBS also significantly reduced MFS scores in the hippocampal dentate gyrus and CA3 sub-regions (all P < 0.0001).
CONCLUSION
ATN-DBS is shown to down-regulate the cAMP/PKA signaling pathway and Akt phosphorylation and to reduce the number of ectopic granule cells, which may be associated with the reduced MFS in chronic epilepsy. The study provides further insights into the mechanism by which ATN-DBS reduces epileptic seizures.
Adenosine Monophosphate
;
Anterior Thalamic Nuclei
;
Cyclic AMP-Dependent Protein Kinases
;
Deep Brain Stimulation
;
Epilepsy/therapy*
;
Epilepsy, Temporal Lobe/therapy*
;
Hippocampus
;
Humans
;
Mossy Fibers, Hippocampal
;
Signal Transduction
8.Feature of cognitive dysfunction in patients with temporal lobe epilepsy and its clinical influencing factors.
Jialinzi HE ; Bo XIAO ; Chaorong LIU ; Kangrun WANG ; Langzi TAN ; Lili LONG
Journal of Central South University(Medical Sciences) 2021;46(3):240-248
OBJECTIVES:
To comprehensively analyze the characteristics of cognitive impairment of temporal lobe epilepsy (TLE), and to explore the effects of different lateral patients' cognitive impairment and different clinical factors on cognitive impairment of TLE.
METHODS:
A total of 84 patients, who met the diagnostic criteria for TLE in the Department of Neurology, Xiangya Hospital, were collected as a patient group, with 36 cases of left TLE and 48 cases of right TLE. A total of 79 healthy volunteers with matching gender, age and education level were selected as a control group. The Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and the scores of Arithmetic Test, Information Test, Digit Symbol Substitution Test (DSST), Block Design Test (BDT), Hayling Test and Verbal Fluency Test (VFT) of the revised Chinese Adult Wechsler Intelligence scale were retrospectively analyzed in the 2 groups.Multiple regression analysis was used to analyze the relationship between the clinical factors and the cognitive impairment score.
RESULTS:
Compared with the control group, the TLE patient group had low scores in all neuropsychological tests, with significant difference (all
CONCLUSIONS
There are multiple cognitive domain dysfunctions in TLE, including language, short-term memory, long-term memory, attention, working memory, executive function and visual space function. Left TLE has greater impairment of executive function and right TLE has greater damage in working memory. Long pathography of disease, hippocampal sclerosis and a history of febrile convulsions may lead to more severe cognitive impairment. Earlier identification and earlier intervention are needed to improve prognosis of patients.
Adult
;
Cognitive Dysfunction/etiology*
;
Epilepsy, Temporal Lobe/complications*
;
Executive Function
;
Humans
;
Neuropsychological Tests
;
Retrospective Studies
9.Hippocampus chronic deep brain stimulation induces reversible transcript changes in a macaque model of mesial temporal lobe epilepsy.
Ning CHEN ; Jian-Guo ZHANG ; Chun-Lei HAN ; Fan-Gang MENG
Chinese Medical Journal 2021;134(15):1845-1854
BACKGROUND:
Deep brain stimulation (DBS) has seizure-suppressing effects but the molecular mechanisms underlying its therapeutic action remain unclear. This study aimed to systematically elucidate the mechanisms underlying DBS-induced seizure suppression at a molecular level.
METHODS:
We established a macaque model of mesial temporal lobe epilepsy (mTLE), and continuous high-frequency hippocampus DBS (hip-DBS) was applied for 3 months. The effects of hip-DBS on hippocampus gene expression were examined using high-throughput microarray analysis followed by bioinformatics analysis. Moreover, the microarray results were validated using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses.
RESULTS:
The results showed that chronic hip-DBS modulated the hippocampal gene expression. We identified 4119 differentially expressed genes and assigned these genes to 16 model profiles. Series test of cluster analysis showed that profiles 5, 3, and 2 were the predominant expression profiles. Moreover, profile 5 was mainly involved in focal adhesion and extracellular matrix-receptor interaction pathway. Nine dysregulated genes (Arhgap5, Col1a2, Itgb1, Pik3r1, Lama4, Fn1, Col3a1, Itga9, and Shc4) and three genes (Col1a2, Itgb1, and Flna) in these two pathways were further validated by qRT-PCR and Western blot analyses, respectively, which showed a concordance.
CONCLUSION
Our findings suggest that hip-DBS could markedly reverse mTLE-induced abnormal gene expression. Findings from this study establish the basis for further investigation of the underlying regulatory mechanisms of DBS for mTLE.
Animals
;
Deep Brain Stimulation
;
Epilepsy, Temporal Lobe/therapy*
;
Hippocampus
;
Humans
;
Macaca
;
Seizures
10.Reconstruction of complex tissue defects in temporal region: report of 3 cases.
Yu SU ; Wei Dong SHEN ; Jun LIU ; Ming Bo LIU ; Ying Li XIE ; Wen Jia WANG ; Pu DAI
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2021;56(5):487-492
Objective: To discuss the techniques and repairing methods of various degree of compound tissue defects in the auriculotemporal region. Methods: Retrospective analysis was conducted on three cases of different repairing methods for huge compound tissue defects in different degrees in the auriculotemporal region after the resection of the malignant tumor or sinus tract due to repeated infection in our hospital. Results: Following total removal of the tumors or sinus tract in all patients, we applied retroauricular lingual flap transfer repairing, latissimus dorsi flap free transfer repairing and vascular anastomosis, scalp tissue expansion in stage Ⅰ, then repairing the lesion with expanded scalp and filling the huge mastoid cavity with abdominal fat in stage Ⅱ, respectively, according to the characteristics of compound tissue defects in the auriculotemporal region. All free flaps survived well. Conclusions: The anatomy of the auricular-temporal area is complex and involves important vascular and neural structures of head and neck and lateral skull base. The huge composite tissue defect following auriculotemporal region surgery, which is composed of skin, muscle and bone tissue, needs to be repaired in one stage. Therefore, flexible repairing methods should be chosen based on different situations, for attaining the goal of completely removing tumor and lesions, and then, covering the operation cavity.
Humans
;
Reconstructive Surgical Procedures
;
Retrospective Studies
;
Skin Transplantation
;
Temporal Lobe
;
Treatment Outcome


Result Analysis
Print
Save
E-mail