1.Material basis of bitter taste and taste-effect relationship in Cistanche deserticola based on UPLC-Q-Orbitrap HRMS combined with molecular docking.
Li-Ying TIAN ; Ming-Jie LI ; Qiang HOU ; Zheng-Yuan WANG ; Ai-Sai-Ti GULIZIYE ; Jun-Ping HU
China Journal of Chinese Materia Medica 2025;50(6):1569-1580
Based on ultra-performance liquid chromatography-quadrupole-electrostatic field Orbitrap high-resolution mass spectrometry(UPLC-Q-Orbitrap HRMS) technology and molecular docking, the bitter-tasting substances(hereafter referred to as "bitter substances") in Cistanche deserticola extract were investigated, and the bitter taste and efficacy relationship was explored to lay the foundation for future research on de-bittering and taste correction. Firstly, UPLC-Q-Orbitrap HRMS was used for the qualitative analysis of the constituents of C. deserticola, and 69 chemical components were identified. These chemical components were then subjected to molecular docking with the bitter taste receptor, leading to the screening of 20 bitter substances, including 6 phenylethanol glycosides, 5 flavonoids, 3 phenolic acids, 2 cycloalkenyl ether terpenes, 2 alkaloids, and 2 other components. Nine batches of fresh C. deserticola samples were collected from the same origin but harvested at different months. These samples were divided into groups based on harvest month and plant part. The bitterness was quantified using an electronic tongue, and the content of six potential bitter-active compounds(pineconotyloside, trichothecene glycoside, tubulin A, iso-trichothecene glycoside, jinshihuaoside, and jingnipinoside) was determined by high-performance liquid chromatography(HPLC). The total content of phenylethanol glycosides, polysaccharides, alkaloids, flavonoids, and phenolic acids was determined using UV-visible spectrophotometry. Chemometric analyses were then conducted, including Pearson's correlation analysis, gray correlation analysis, and orthogonal partial least squares discriminant analysis(OPLS-DA), to identify the bitter components in C. deserticola. The results were consistent with the molecular docking findings, and the two methods mutually supported each other. Finally, network pharmacological predictions and analyses were performed to explore the relationship between the targets of bitter substances and their efficacy. The results indicated that key targets of the bitter substances included EGFR, PIK3CB, and PTK2. These substances may exert their bitter effects by acting on relevant disease targets, confirming that the bitter substances in C. deserticola are the material basis of its bitter taste efficacy. In conclusion, this study suggests that the phenylethanol glycosides, primarily pineconotyloside, mauritiana glycoside, and gibberellin, are the material basis for the "bitter taste" of C. deserticola. The molecular docking technique plays a guiding role in the screening of bitter substances in traditional Chinese medicine(TCM). The bitter substances in C. deserticola not only contribute to its bitter taste but also support the concept of the "taste-efficacy" relationship in TCM, providing valuable insights and references for future research in this area.
Molecular Docking Simulation
;
Taste
;
Chromatography, High Pressure Liquid
;
Cistanche/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Mass Spectrometry
2.Identification of critical quality attributes related to property and flavor of Jianwei Xiaoshi Tablets based on T1R2/T1R3/TRPV1-HEMT biosensor.
Dong-Hong LIU ; Yan-Yu HAN ; Jing WANG ; Hai-Yang LI ; Xin-Yu GUO ; Hui-Min FENG ; Han HE ; Shuo-Shuo XU ; Zhi-Jian ZHONG ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(14):3930-3937
The quality of traditional Chinese medicine(TCM) is a critical foundation for ensuring the stability of its efficacy, as well as the safety and effectiveness of its clinical use. The identification of critical quality attributes(CQAs) is one of the core components of TCM preparation quality control. This study focuses on Jianwei Xiaoshi Tablets and explores their CQAs related to property and flavor from the perspective of taste receptor proteins. Three taste receptor proteins, T1R2, T1R3, and TRPV1, were selected, and a biosensor based on high-electron-mobility transistor(HEMT) was constructed to detect the interactions between Jianwei Xiaoshi Tablets and taste receptor proteins. Simultaneously, liquid chromatography-mass spectrometry(LC-MS) technology was used to analyze the chemical composition of Jianwei Xiaoshi Tablets. In examining the interaction strength, the results indicated that the interaction between Jianwei Xiaoshi Tablets and TRPV1 protein was the strongest, followed by T1R3, with the interaction with T1R2 being relatively weaker. By combining biosensing technology with LC-MS, 16 chemical components were identified from Jianwei Xiaoshi Tablets, among which six were selected as CQAs for sweetness and seven for pungency. Further validation experiments demonstrated that CQAs such as hesperidin and hesperetin had strong interactions with their corresponding taste receptor proteins. Through the combined use of multiple technological approaches, this study successfully determined the property and flavor-related CQAs of Jianwei Xiaoshi Tablets. It provides novel ideas and approach for the identification of CQAs in TCM preparations and offers comprehensive theoretical support for TCM quality control, contributing to the improvement and development of TCM preparation quality control systems.
Drugs, Chinese Herbal/chemistry*
;
Biosensing Techniques/methods*
;
TRPV Cation Channels/chemistry*
;
Tablets/chemistry*
;
Receptors, G-Protein-Coupled/genetics*
;
Quality Control
;
Taste
;
Humans
;
Mass Spectrometry
3.Effect of medicinal parts and harvest seasons on nature-flavor correlation of plant-based Chinese materia medica.
Qi-Ao MA ; Guang YANG ; Hong-Chao WANG ; Ying LI ; Meng CHENG ; Tie-Lin WANG ; Kai SUN ; Xiu-Lian CHI
China Journal of Chinese Materia Medica 2025;50(15):4228-4237
This study selected 6 529 plant-based Chinese materia medica(PCMM) from Chinese Materia Medica as research subjects and applied a random permutation test to explore the overall correlation characteristics between nature and flavor, as well as the correlation characteristics after distinguishing different medicinal parts and harvest seasons. The results showed that the overall correlation characteristics between nature and flavor in PCMM were significantly associated in the following pairs: cold and bitter, cool and bitter, cool and astringent, cool and light, neutral and sweet, neutral and astringent, neutral and light, neutral and sour, hot and pungent, and warm and pungent. When analyzing the data by distinguishing medicinal parts and/or harvest seasons, new correlation patterns emerged, characterized by the disappearance of some significant correlations and the emergence of new ones. When analyzing by medicinal parts alone, significant correlations were found in the following cases: cold and light in leaves, cold and salty in barks, cool and sweet in fruits and seeds, neutral and pungent in whole herbs, neutral and salty in stems, and warm and salty in flowers. However, no significant correlations were found between cool and bitter in stems and other types of herbs, cool and astringent in fruits, seeds, flowers, and other types of herbs, cool and light in leaves, fruits, seeds, barks, flowers and other types of herbs, neutral and sweet in barks, neutral and astringent in whole herbs and stems, neutral and light in leaves, fruits, seeds, and flowers, neutral and sour in whole herbs, stems, barks, flowers, and other types of herbs, and hot and pungent in whole herbs, stems, flowers, and other types of herbs. When analyzing by harvest season alone, significant correlations were found in the following cases: cold and salty, and cool and sour in herbs harvested in winter, and neutral and salty in herbs harvested year-round. However, no significant correlation was found between cool and light in herbs harvested in winter. When considering both medicinal parts and harvest seasons, compared to the independent influence of medicinal parts, 14 new significant correlations emerged(e.g., the correlation between cool and bitter in stems harvested in spring), while 53 previously significant correlations disappeared(e.g., the correlation between cool and bitter in barks harvested in summer). Compared to the independent influence of harvest seasons, 11 new significant correlations appeared(e.g., the correlation between cold and light in barks harvested in autumn), while 50 previously significant correlations disappeared(e.g., the correlation between hot and pungent in leaves harvested in winter). This study is the first to reveal the influence of medicinal parts and harvest seasons on the correlation between nature and flavor in PCMM, which highlights that these two factors can interact and jointly affect nature-flavor correlations. Further research is needed to explore the underlying mechanisms. This study provides a deeper understanding of the inherent scientific connotations of herbal properties and offers a theoretical foundation for the cultivation and harvesting of PCMM.
Seasons
;
Plants, Medicinal/growth & development*
;
Drugs, Chinese Herbal/chemistry*
;
Taste
4.Dynamic changes in physiochemical, structural, and flavor characteristics of ginger-juice milk curd.
Haifeng PAN ; Wenna BAO ; Yi CHEN ; Hongxiu LIAO
Journal of Zhejiang University. Science. B 2025;26(4):393-404
Dynamic changes in the physiochemical, structural, and flavor characteristics of ginger-juice milk curd were explored by texture analysis, scanning electron microscopy, rheometry, electronic tongue, and gas chromatography-mass spectrometry (GC-MS). Protein electrophoresis showed that ginger juice could hydrolyze αs-, β-, and κ-casein. Curd formation was initiated at 90 s, marked by significant changes in intensity detected via intrinsic fluorescence. The contents of soluble protein and calcium decreased rapidly during coagulation, while the caseinolytic activity, storage moduli, loss moduli, hardness, adhesiveness, and water-holding capacity increased, resulting in a denser gel structure with smaller pores and fewer cavitations as observed by scanning electron microscopy. Electronic tongue analysis indicated that milk could neutralize the astringency and saltiness of ginger juice, rendering the taste of ginger-juice milk curd more akin to that of milk. Approximately 70 volatile components were detected in ginger-juice milk curd. α-Zingiberene, α-curcumene, β-sesquiphellandrene, and β-bisabolene were the predominant volatile flavor compounds, exhibiting an initial decrease in content followed by stability after 90 s. Decanoic acid, γ-elemene, and caryophyllene were identified as unique volatile compounds after mixing of milk and ginger juice. Understanding the dynamic changes in these characteristics during coagulation holds significant importance for the production of ginger-juice milk curd.
Zingiber officinale/chemistry*
;
Milk/chemistry*
;
Animals
;
Taste
;
Gas Chromatography-Mass Spectrometry
;
Caseins/chemistry*
;
Microscopy, Electron, Scanning
;
Rheology
;
Flavoring Agents
5.Development and application of gustatory evoked potentiometer.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(3):276-280
Human taste is an important function of chemical perception. In recent years, brain taste evoked potentials have received more and more attention as a feasible tool for objective assessment of taste dysfunction. This paper reviews the main characteristics of gustatory evoked potential signals, the most widely used recording and processing techniques, and the scientific advances and relevance of gustatory evoked potentials in many important applications. In particular, taste evoked potentials are used to study the central effects of food intake and taste disorders, which may affect cognition and personality, or may be potential indicators of the onset or progression of neurological disorders. For these reasons, this paper presents and analyzes the latest scientific results and future challenges of using gustatory evoked potentials as an attractive solution to objective monitoring techniques for taste disorders. Human taste is an important function of chemical perception. In recent years, brain gustatory evoked potentials have received more and more attention as a feasible tool for objective assessment of taste dysfunction. This paper reviews the main characteristics of gustatory evoked potential signals, the most widely used recording and processing techniques, and the scientific advances and relevance of gustatory evoked potentials in many important applications. In particular, gustatory evoked potentials are used to study the central effects of food intake and taste disorders, which may affect cognition and personality, or may be potential indicators of the onset or progression of neurological disorders. For these reasons, this paper presents and analyzes the latest scientific results and future challenges of using gustatory evoked potentials as an attractive solution to objective monitoring techniques for taste disorders.
Humans
;
Evoked Potentials
;
Taste/physiology*
;
Taste Perception/physiology*
6.c-Kit signaling confers damage-resistance to sweet taste cells upon nerve injury.
Su Young KI ; Jea Hwa JANG ; Dong-Hoon KIM ; Yong Taek JEONG
International Journal of Oral Science 2025;17(1):57-57
Taste buds relay taste sensory information to the primary taste neurons but depend on those same neurons for essential components to maintain function. While denervation-induced taste bud degeneration and subsequent regeneration were discovered decades ago, the mechanisms underlying these phenomena (e.g., heterogenous cellular responses to nerve injury and the signaling pathways involved) remain poorly understood. Here, using mouse genetics, nerve injury models, pharmacologic manipulation, and taste bud organoid models, we identify a specific subpopulation of taste cells, predominantly c-Kit-expressing sweet cells, that exhibit superior resistance to nerve injury. We found the c-Kit inhibitor imatinib selectively reduced the number of residual c-Kit-expressing sweet cells at post-operation week 2, subsequently attenuating the re-emergence of other type II cells by post-operation week 4. In taste bud organoids, c-Kit-expressing cells were resistant to R-spondin withdrawal but susceptible to imatinib, while other taste cell types showed the opposite behavior. We also observed a distinct population of residual taste cells that acquired stem-like properties, generating clonal descendent cells among suprabasal keratinocytes independent of c-Kit signaling. Together, our findings reveal that c-Kit signaling confers resilience on c-Kit-expressing sweet cells and supports the broader reconstruction of taste buds during the later regenerative stage following nerve injury.
Animals
;
Taste Buds/metabolism*
;
Proto-Oncogene Proteins c-kit/metabolism*
;
Mice
;
Signal Transduction
;
Imatinib Mesylate/pharmacology*
;
Mice, Inbred C57BL
7.Incidence and prognosis of olfactory and gustatory dysfunctions related to infection of SARS-CoV-2 Omicron strain: a national multi-center survey of 35 566 population.
Meng Fan LIU ; Rui Xia MA ; Xian Bao CAO ; Hua ZHANG ; Shui Hong ZHOU ; Wei Hong JIANG ; Yan JIANG ; Jing Wu SUN ; Qin Tai YANG ; Xue Zhong LI ; Ya Nan SUN ; Li SHI ; Min WANG ; Xi Cheng SONG ; Fu Quan CHEN ; Xiao Shu ZHANG ; Hong Quan WEI ; Shao Qing YU ; Dong Dong ZHU ; Luo BA ; Zhi Wei CAO ; Xu Ping XIAO ; Xin WEI ; Zhi Hong LIN ; Feng Hong CHEN ; Chun Guang SHAN ; Guang Ke WANG ; Jing YE ; Shen Hong QU ; Chang Qing ZHAO ; Zhen Lin WANG ; Hua Bin LI ; Feng LIU ; Xiao Bo CUI ; Sheng Nan YE ; Zheng LIU ; Yu XU ; Xiao CAI ; Wei HANG ; Ru Xin ZHANG ; Yu Lin ZHAO ; Guo Dong YU ; Guang Gang SHI ; Mei Ping LU ; Yang SHEN ; Yu Tong ZHAO ; Jia Hong PEI ; Shao Bing XIE ; Long Gang YU ; Ye Hai LIU ; Shao wei GU ; Yu Cheng YANG ; Lei CHENG ; Jian Feng LIU
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(6):579-588
Objective: This cross-sectional investigation aimed to determine the incidence, clinical characteristics, prognosis, and related risk factors of olfactory and gustatory dysfunctions related to infection with the SARS-CoV-2 Omicron strain in mainland China. Methods: Data of patients with SARS-CoV-2 from December 28, 2022, to February 21, 2023, were collected through online and offline questionnaires from 45 tertiary hospitals and one center for disease control and prevention in mainland China. The questionnaire included demographic information, previous health history, smoking and alcohol drinking, SARS-CoV-2 vaccination, olfactory and gustatory function before and after infection, other symptoms after infection, as well as the duration and improvement of olfactory and gustatory dysfunction. The self-reported olfactory and gustatory functions of patients were evaluated using the Olfactory VAS scale and Gustatory VAS scale. Results: A total of 35 566 valid questionnaires were obtained, revealing a high incidence of olfactory and taste dysfunctions related to infection with the SARS-CoV-2 Omicron strain (67.75%). Females(χ2=367.013, P<0.001) and young people(χ2=120.210, P<0.001) were more likely to develop these dysfunctions. Gender(OR=1.564, 95%CI: 1.487-1.645), SARS-CoV-2 vaccination status (OR=1.334, 95%CI: 1.164-1.530), oral health status (OR=0.881, 95%CI: 0.839-0.926), smoking history (OR=1.152, 95%CI=1.080-1.229), and drinking history (OR=0.854, 95%CI: 0.785-0.928) were correlated with the occurrence of olfactory and taste dysfunctions related to SARS-CoV-2(above P<0.001). 44.62% (4 391/9 840) of the patients who had not recovered their sense of smell and taste also suffered from nasal congestion, runny nose, and 32.62% (3 210/9 840) suffered from dry mouth and sore throat. The improvement of olfactory and taste functions was correlated with the persistence of accompanying symptoms(χ2=10.873, P=0.001). The average score of olfactory and taste VAS scale was 8.41 and 8.51 respectively before SARS-CoV-2 infection, but decreased to3.69 and 4.29 respectively after SARS-CoV-2 infection, and recovered to 5.83and 6.55 respectively at the time of the survey. The median duration of olfactory and gustatory dysfunctions was 15 days and 12 days, respectively, with 0.5% (121/24 096) of patients experiencing these dysfunctions for more than 28 days. The overall self-reported improvement rate of smell and taste dysfunctions was 59.16% (14 256/24 096). Gender(OR=0.893, 95%CI: 0.839-0.951), SARS-CoV-2 vaccination status (OR=1.334, 95%CI: 1.164-1.530), history of head and facial trauma(OR=1.180, 95%CI: 1.036-1.344, P=0.013), nose (OR=1.104, 95%CI: 1.042-1.171, P=0.001) and oral (OR=1.162, 95%CI: 1.096-1.233) health status, smoking history(OR=0.765, 95%CI: 0.709-0.825), and the persistence of accompanying symptoms (OR=0.359, 95%CI: 0.332-0.388) were correlated with the recovery of olfactory and taste dysfunctions related to SARS-CoV-2 (above P<0.001 except for the indicated values). Conclusion: The incidence of olfactory and taste dysfunctions related to infection with the SARS-CoV-2 Omicron strain is high in mainland China, with females and young people more likely to develop these dysfunctions. Active and effective intervention measures may be required for cases that persist for a long time. The recovery of olfactory and taste functions is influenced by several factors, including gender, SARS-CoV-2 vaccination status, history of head and facial trauma, nasal and oral health status, smoking history, and persistence of accompanying symptoms.
Female
;
Humans
;
Adolescent
;
SARS-CoV-2
;
Smell
;
COVID-19/complications*
;
Cross-Sectional Studies
;
COVID-19 Vaccines
;
Incidence
;
Olfaction Disorders/etiology*
;
Taste Disorders/etiology*
;
Prognosis
8.Hot water washing processing technology of Euodiae Fructus based on change laws of active components and tastes.
Shan JIANG ; Xiao-Mei ZHAO ; Jie GUO ; Jia-Ping WANG ; Xiao-Qian LIU ; Wei-Hong FENG ; Li-Hua YAN ; Zhi-Min WANG
China Journal of Chinese Materia Medica 2023;48(13):3485-3497
In order to establish the standardized processing technology of the hot water washing of Euodiae Fructus, this study, based on the traditional processing method of hot water washing of Euodiae Fructus recorded in ancient works and modern processing specifications of traditional Chinese medicine decoction pieces, took the yield of decoction pieces and the content of main components as the indicators and optimized the processing conditions by orthogonal test based on the results of single factor investigation. At the same time, electronic tongue technology was used to analyze the change law of the taste index of Euodiae Fructus during the hot water washing. The results of the single factor investigation showed that the content of the main components in Euodiae Fructus showed some regular changes during the processing. Specifically, the content of chlorogenic acid, hyperin, isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-galactoside, and dehydroevodiamine decreased significantly, with average decreases of-23.75%,-27.80%,-14.04%,-14.03%, and-13.11%, respectively. The content of limonin increased significantly with an average increase of 19.83%. The content of evodiamine, rutaecarpine, evocarpine, and dihydroevocarpine showed fluctuating changes and generally increased, with average variation amplitudes of 0.54%,-3.78%, 2.69%, and 5.13%, respectively. The orthogonal test results showed that the optimum processing parameters for the hot water washing of Euodiae Fructus were as follows: washing time of 2 min, the solid-to-liquid ratio of 1∶10 g·mL~(-1), washing temperature of 80 ℃, washing once, and drying at 50 ℃. After the hot water washing processing, the average yield of Euodiae Fructus pieces was 94.80%. The content of limonin, evodiamine, and rutaecarpine was higher than those of raw pro-ducts, and the average transfer rates were 102.56%, 103.15%, and 105.16%, respectively. The content of dehydroevodiamine was lower than that of the raw products, and the average transfer rate was 83.04%. The results of taste analysis showed that the hot water washing could significantly reduce the salty, astringent, and bitter tastes of Euodiae Fructus. This study revealed the influence of the hot water washing on the content of main components and taste of Euodiae Fructus, and the processing technology of the hot water was-hing of Euodiae Fructus established in this study was stable, feasible, and suitable for industrial production, which laid a foundation for clarifying its processing principle and improving the quality standard and clinical application value of decoction pieces.
Drugs, Chinese Herbal
;
Taste
;
Limonins
;
Technology
;
Chromatography, High Pressure Liquid/methods*
10.Combined anti-bitterness strategy for extremely bitter characteristics of Andrographis Herba decoction and mechanism.
Qian-Hui ZHANG ; Yin TIAN ; Min QIU ; Xue HAN ; Hong-Yan MA ; Li HAN ; Ding-Kun ZHANG
China Journal of Chinese Materia Medica 2022;47(20):5424-5433
Three kinds of excipients were selected to investigate the anti-bitterness effect on the extremely bitter characteristics of Andrographis Herba decoction, and the optimal combined anti-bitterness formula was obtained. The preparation principle of different excipients was clarified by virtual screening and experimental verification to explore the advantages of the three kinds of excipients in the combined anti-bitterness effect. Sensory evaluation showed that mPEG_(2000)-PLLA_(2000), γ-cyclodextrin(γ-CD), and aspartame all had good anti-bitterness effect, which reduced the bitterness intensity of Andrographis Herba decoction by 0.5, 6, and 3 points, respectively. The anti-bitterness effect was superior when 0.15% mPEG_(2000)-PLLA_(2000), 1.60% γ-CD, and 0.04% aspartame were combined, and the taste score of the Andrographis Herba decoction decreased from 8 points(severe bitterness) to 1 point(almost no bitterness). Quantum chemistry calculations showed that mPEG_(2000)-PLLA_(2000) reduced the electrostatic potential of bitter groups, which spontaneously combined with it and formed a physical barrier, hindering the binding of bitter components to receptors. The interaction between γ-CD and bitter components was studied. It was found that the surface area and free energy of γ-CD decreased and the dipole moment increased, indicating that γ-CD included bitter components and self-assembled to form supramolecules. Molecular docking showed that hydroxy at position 14 and carbonyl at position 16 of andrographolide, and hydroxy at position 3 and 4, carbonyl at position 14, and five-membered lactone ring of dehydrated andrographolide were possibly the main bitter groups. The binding free energies of aspartame to bitter receptors TAS2 R10, TAS2 R14, and TAS2 R46 were-3.21,-1.55, and-2.52 kcal·mol~(-1), respectively, indicating that aspartame competed to inhibit the binding of bitter groups to bitter receptors. The results of content determination showed that the free amounts of andrographolide and dehydrated andrographolide in Andrographis Herba decoction were 0.23% and 0.28% respectively, while after adding flavor masking excipients, the dissociation amount of andrographolide and dehydrated andrographolide in the decoction decreased to 0.13% and 0.20%, respectively. The above results show that mPEG_(2000)-PLLA_(2000) involves some bitter components into it through micellar self-assembly to reconcile the entrance bitterness, and γ-CD includes the remaining bitter components in the real solution to control the main bitter taste. Aspartame further competes to inhibit the combination of bitter components and bitter receptors, and improves the taste to be sweet. Multi-excipients combined with anti-bitterness strategy significantly reduces the free concentration of bitter substances in Andrographis Herba decoction, and optimizes the taste of the decoction.
Andrographis
;
Taste
;
Aspartame
;
Excipients
;
Molecular Docking Simulation

Result Analysis
Print
Save
E-mail