1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Investigation on the mechanisms of Colquhounia Root Tablets in reversing vascular endothelial cell dysfunction of rheumatoid arthritis via modulating NOD2/SMAD3/VEGFA signaling axis
Bing-bing CAI ; Ya-wen CHEN ; Tao LI ; Yuan ZENG ; Yan-qiong ZHANG ; Na LIN ; Xia MAO ; Ya LIN
Acta Pharmaceutica Sinica 2025;60(2):397-407
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation, joint destruction, and functional impairment. Angiogenesis plays a key role in the pathological progression of RA with dysfunction of endothelial cells to promote synovial inflammation, sustain pannus formation, subsequently leading to joint damage. Colquhounia Root Tablets (CRT), a Chinese patent drug, has shown a satisfying clinical efficacy in treating RA, while the underlying mechanism by which CRT inhibits RA-associated angiogenesis remains unclear. In this study, we applied a research approach combining transcriptomic data analysis, bio-network mapping, and
3.Equivalence of SYN008 versus omalizumab in patients with refractory chronic spontaneous urticaria: A multicenter, randomized, double-blind, parallel-group, active-controlled phase III study.
Jingyi LI ; Yunsheng LIANG ; Wenli FENG ; Liehua DENG ; Hong FANG ; Chao JI ; Youkun LIN ; Furen ZHANG ; Rushan XIA ; Chunlei ZHANG ; Shuping GUO ; Mao LIN ; Yanling LI ; Shoumin ZHANG ; Xiaojing KANG ; Liuqing CHEN ; Zhiqiang SONG ; Xu YAO ; Chengxin LI ; Xiuping HAN ; Guoxiang GUO ; Qing GUO ; Xinsuo DUAN ; Jie LI ; Juan SU ; Shanshan LI ; Qing SUN ; Juan TAO ; Yangfeng DING ; Danqi DENG ; Fuqiu LI ; Haiyun SUO ; Shunquan WU ; Jingbo QIU ; Hongmei LUO ; Linfeng LI ; Ruoyu LI
Chinese Medical Journal 2025;138(16):2040-2042
4.Research progress on natural small molecule compound inhibitors of NLRP3 inflammasome.
Tian-Yuan ZHANG ; Xi-Yu CHEN ; Xin-Yu DUAN ; Qian-Ru ZHAO ; Lin MA ; Yi-Qi YAN ; Yu WANG ; Tao LIU ; Shao-Xia WANG
China Journal of Chinese Materia Medica 2025;50(3):644-657
In recent years, there has been a growing interest in the research on NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome inhibitors in the treatment of inflammatory diseases. The NLRP3 inflammasome is integral to the innate immune response, and its abnormal activation can lead to the release of pro-inflammatory cytokine, consequently facilitating the progression of various pathological conditions. Therefore, investigating the pharmacological inhibition pathway of the NLRP3 inflammasome represents a promising strategy for the treatment of inflammation-related diseases. Currently, the Food and Drug Administration(FDA) has not approved drugs targeting the NLRP3 inflammasome for clinical use due to concerns regarding liver toxicity and gastrointestinal side effects associated with chemical small molecule inhibitors in clinical trials. Natural small molecule compounds such as polyphenols, flavonoids, and alkaloids are ubiquitously found in animals, plants, and other natural substances exhibiting pharmacological activities. Their abundant sources, intricate and diverse structures, high biocompatibility, minimal adverse reactions, and superior biochemical potency in comparison to synthetic compounds have attracted the attention of extensive scholars. Currently, certain natural small molecule compounds have been demonstrated to impede the activation of the NLRP3 inflammasome via various action mechanisms, so they are viewed as the innovative, feasible, and minimally toxic therapeutic agents for inhibiting NLRP3 inflammasome activation in the treatment of both acute and chronic inflammatory diseases. Hence, this study systematically examined the effects and potential mechanisms of natural small molecule compounds derived from traditional Chinese medicine on the activation of NLRP3 inflammasomes at their initiation, assembly, and activation stages. The objection is to furnish theoretical support and practical guidance for the effective clinical application of these natural small molecule inhibitors.
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Inflammasomes/metabolism*
;
Inflammation/drug therapy*
;
Anti-Inflammatory Agents/therapeutic use*
;
Humans
;
Animals
;
Disease Models, Animal
;
Biological Products/therapeutic use*
;
Drug Discovery
;
Medicine, Chinese Traditional/methods*
5.Unveiling the renoprotective mechanisms of self-assembled herbal nanoparticles from Scutellaria barbata and Scleromitrion diffusum in acute kidney injury: A nano-TCM approach.
Lunyue XIA ; Qunfang YANG ; Kangzhe FU ; Yutong YANG ; Kaiyue DING ; Yuexue HUO ; Lanfang ZHANG ; Yunong LI ; Borong ZHU ; Peiyu LI ; Yijie HUO ; Liang SUN ; Ya LIU ; Haigang ZHANG ; Tao LIU ; Wenjun SHAN ; Lin ZHANG
Acta Pharmaceutica Sinica B 2025;15(8):4265-4284
Acute kidney injury (AKI) is a critical clinical condition characterized by rapid renal function decline, with high morbidity, mortality, and healthcare costs. Traditional Chinese medicine (TCM) has shown potential effects on mitigating oxidative stress and programmed cell death in AKI models. Scutellaria barbata D. Don (SB) and Scleromitrion diffusum (Willd.) R. J. Wang (SD), a classic TCM herbal pair exhibited anti-inflammatory and antioxidant activities. Using advanced chromatographic separation technology, we enriched the effective fractions of water extracts from SB-SD, obtaining self-assembled herbal nanoparticles (SB and SD nanoparticles, SSNPs) rich in flavonoids and terpenoids. These SSNPs demonstrated robust antioxidant properties in vitro and mitigated AKI progression in vivo by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Oral administration of SSNPs in mice resulted in absorption into the bloodstream, formation of a protein corona, reduced macrophage phagocytosis, and enhanced bioavailability and renal targeting. Furthermore, we investigated the self-assembly principle of SSNPs using representative flavonoids and terpenoids. Kinetic studies and in situ transmission electron microscopy (in situ TEM) revealed that these compounds self-assemble via supramolecular forces like hydrogen bonding and π-π interactions, forming stable nanostructures. This study elucidates the renoprotective effects and mechanisms of SB and SD, and provides a novel approach for the development of TCM-based nanomedicines, highlighting the potential of nano-TCM in AKI treatment.
6.Three-dimensional CT reconstruction of the hepatic pedicle based on the Laennec’s capsule and the development and validation of extra-sheath dissection/occlusion clamp
Zhiyu LIN ; Xin XIA ; Huan LEI ; Yuchuan LUO ; Long CHENG ; Hongyin LIANG ; Tao WANG
Journal of Clinical Hepatology 2025;41(10):2118-2124
ObjectiveTo investigate the anatomical features of three-dimensional (3D) reconstruction of the hepatic pedicle based on the Laennec’s capsule, as well as its application value in the development of extra-sheath dissection/occlusion clamp and precise hepatectomy. MethodsA retrospective analysis was performed for the abdominal contrast-enhanced CT data of 100 patients without anatomical abnormalities of the hepatic pedicle in The General Hospital of Western Theater Command from January 2021 to June 2024. The Hisense CAS system combined with the 3D U-net deep learning algorithm was used for 3D reconstruction of the hepatic pedicle at the level of Laennec’s capsule, and the hepatic pedicle was measured in terms of the length, outer diameter, and angle of the main trunk and branches. An extra-sheath hepatic pedicle dissection/occlusion clamp was developed based on the above measurements, and a total of 30 patients scheduled for right hemihepatectomy were enrolled and randomly divided into device group and control group, with 15 patients in each group. The two groups were compared in terms of hepatic pedicle handling time, time of operation, intraoperative blood loss, and the incidence rate of bile duct injury. The independent-samples t test was used for comparison of continuous data between two groups, and the Fisher’s exact test was used for comparison of categorical data between two groups. ResultsThe results of 3D reconstruction revealed four variants in the main trunk branches of the hepatic pedicle, with type Ⅰ (left-right branching) accounting for 88% (88/100), type Ⅱ (trifurcation type) accounting for 5% (5/100), type Ⅲ (right anterior branching) accounting for 5% (5/100), and type Ⅳ (special type) accounting for 2% (2/100). The outer diameter of the main hepatic pedicle was 24.10±6.16 mm, the length of the left main branch was 20.59±6.38 mm, and the length of the right main branch was 21.99±7.98 mm. Compared with the control group, the device group had significantly shorter hepatic pedicle handling time (14.10±1.30 minutes vs 17.50±2.00 minutes, t=-5.620, P=0.001) and time of operation (217.00±28.28 minutes vs 241.87±19.49 minutes, t=-2.804, P=0.009). The device group had a significantly lower incidence rate of bile duct injury than the control group (0 vs 20%, P=0.031). Conclusion3D reconstruction based on the Laennec’s capsule can accurately display the anatomical variations of the hepatic pedicle. The extra-sheath hepatic pedicle dissection/occlusion clamp developed based on such data can optimize the process of hepatic pedicle management and improve surgical safety, and therefore, it holds promise for clinical application.
7.Epidemiological characteristics and diagnosis of imported Plasmodium malariae and Plasmodium ovale malaria cases in five provinces of China from 2014 to 2021
Wen LIN ; Duoquan WANG ; Lingcong SUN ; Tao ZHANG ; Hui YAN ; Wei RUAN ; Ying LIU ; Dongni WU ; Shizhu LI ; Jing XIA ; Hong ZHU
Chinese Journal of Schistosomiasis Control 2024;36(4):407-411
Objective To investigate the epidemiological characteristics and diagnosis of imported Plasmodium malariae and P. ovale malaria cases in Anhui Province, Hubei Province, Zhejiang Province, Guangxi Zhuang Autonomous Region and Henan Province from 2014 to 2021, so as to provide insights into malaria control in these five provinces. Methods All data pertaining to malaria cases reported in five provinces of China were captured from Chinese Disease Control and Prevention Information System from 2014 to 2021, and the epidemiological characteristics of imported P. malariae and P. ovale malaria cases were analysed using a descriptive epidemiological method. The duration from onset of malaria to initial diagnosis, duration from initial diagnosis to definitive diagnosis, institutions of initial and definitive diagnoses, and proportion of correct malaria diagnosis at initial diagnosis were statistically analyzed. Results A total of 1 223 imported P. malariae and P. ovale malaria cases were reported in Anhui Province, Hubei Province, Zhejiang Province, Henan Province and Guangxi Zhuang Autonomous Region from 2014 to 2021, there were 158 P. malariae malaria cases (12.92%) and 1 065 P. ovale malaria cases (87.08%). Totally 98.53% (1 205/1 223) of the imported malaria cases were from Africa, with Angola (18.99%, 30/158), Nigeria (11.39%,18/158), Cameroon (10.76%, 17/158), Ghana (10.13%, 16/158) and the Democratic Republic of the Congo (10.13%,16/158) as predominant countries where P. malariae malaria cases were from, and Ghana (23.19%, 247/1 065), Cameroon (14.74%, 157/1 065), Nigeria (9.39%, 100/1 065) and Angola (6.95%, 74/1 065) as predominant countries where P. ovale malaria cases were from. There were significant differences in the duration from onset of malaria to initial diagnosis (χ2 = 27.673, P = 0.000) and duration from initial diagnosis to definitive diagnosis of P. malariae and P. ovale malaria cases (χ2 = 29.808, P = 0.000), and the proportions of correct initial diagnosis of P. malariae and P. ovale malaria cases were 38.61% (61/158) and 56.53% (602/1 065). There were 74.69% (118/158) of P. malariae malaria cases with definitive diagnosis in county-, city-, and province-level medical institutions, and 79.25% (844/1 065) of P. ovale malaria cases with definitive diagnosis in county- and city-level medical institutions and county-level centers for disease control and prevention. Conclusions The imported P. malariae and P. ovale malaria cases in Anhui Province, Hubei Province, Zhejiang Province, Henan Province and Guangxi Zhuang Autonomous Region from 2014 to 2021 were mainly returned from Africa and the proportion of correct diagnosis of P. malariae and P. ovale malaria was low at initial diagnosis. Persistent improvements in the diagnostic capability of malaria are required in medical institutions.
8.The Regulatory Function of ADAR1-mediated RNA Editing in Hematological Malignancies
Xing-Yu WAN ; Huan-Ping GUO ; Rui-Hao HUANG ; Xiao-Qi WANG ; Ling-Yu ZENG ; Tao WU ; Lin XIA ; Xi ZHANG
Progress in Biochemistry and Biophysics 2024;51(2):300-308
RNA editing, an essential post-transcriptional reaction occurring in double-stranded RNA (dsRNA), generates informational diversity in the transcriptome and proteome. In mammals, the main type of RNA editing is the conversion of adenosine to inosine (A-to-I), processed by adenosine deaminases acting on the RNAs (ADARs) family, and interpreted as guanosine during nucleotide base-pairing. It has been reported that millions of nucleotide sites in human transcriptome undergo A-to-I editing events, catalyzed by the primarily responsible enzyme, ADAR1. In hematological malignancies including myeloid/lymphocytic leukemia and multiple myeloma, dysregulation of ADAR1 directly impacts the A-to-I editing states occurring in coding regions, non-coding regions, and immature miRNA precursors. Subsequently, aberrant A-to-I editing states result in altered molecular events, such as protein-coding sequence changes, intron retention, alternative splicing, and miRNA biogenesis inhibition. As a vital factor of the generation and stemness maintenance in leukemia stem cells (LSCs), disordered RNA editing drives the chaos of molecular regulatory network and ultimately promotes the cell proliferation, apoptosis inhibition and drug resistance. At present, novel drugs designed to target RNA editing(e.g., rebecsinib) are under development and have achieved outstanding results in animal experiments. Compared with traditional antitumor drugs, epigenetic antitumor drugs are expected to overcome the shackle of drug resistance and recurrence in hematological malignancies, and provide new treatment options for patients. This review summarized the recent advances in the regulation mechanism of ADAR1-mediated RNA editing events in hematologic malignancies, and further discussed the medical potential and clinical application of ADAR1.
9.Network Pharmacological Analysis and Experimental Verification of the Mechanism of Gastrodiae Rhizoma-Salviae Miltiorrhizae Radix et Rhizoma Drug Pair in the Treatment of Hypertension
Sifan ZHONG ; Yuan TAO ; Songbo LAN ; Jiayu CHANG ; Xia HE ; Jiayue LIN ; Ting ZHANG ; Xu YAN
Traditional Chinese Drug Research & Clinical Pharmacology 2024;35(3):384-393
Objective To investigate the mechanism of Gastrodiae Rhizoma-Salviae Miltiorrhizae Radix et Rhizoma drug pair in the treatment of hypertension based on the network pharmacology method and animal experiment verification.Methods(1)TCMSP,BATMAN and TCMIP databases were used to screen the active components and targets of Gastrodiae Rhizoma-Salviae Miltiorrhizae Radix et Rhizoma drug pair.The hypertension-related targets were obtained by searching the Drugbank,Genecard,TTD and Disgenet databases.The intersection(common target)of the active component target and the target related to hypertension disease was taken,and the obtained intersection target was the potential target of Gastrodiae Rhizoma-Salviae Miltiorrhizae Radix et Rhizoma drug pair for the treatment of hypertension.The active ingredients and their targets of Gastrodiae Rhizoma-Salviae Miltiorrhizae Radix et Rhizoma drug pair were imported into Cytoscape 3.9.1 software to construct a'Chinese medicines-active ingredients-targets'network and screen key active ingredients.The protein-protein interaction(PPI)network of potential targets was constructed to screen potential core targets.The Metascape platform was used to analyze the GO function and KEGG pathway enrichment of potential targets.The key active components and potential core targets were selected for molecular docking verification.(2)Thirty male spontaneously hypertensive rats(SHR)were randomly divided into model group,western medicine group(Candesartan Cilexetil,0.72 mg·kg-1)and low-,medium-and high-dose groups of Gastrodiae Rhizoma-Salviae Miltiorrhizae Radix et Rhizoma(2.25,4.50,9.00 g·kg-1).Another male WKY rats were selected as blank group,with 6 rats in each group,once a day for 8 weeks.The systolic blood pressure of rat tail artery was detected before administration and 2,4,6 and 8 weeks after drug intervention.The pathological changes of thoracic aorta were observed by HE staining.The protein expression levels of GRP78,CHOP and Caspase-12 in aorta abdominalis were detected by Western Blot.Results(1)A total of 83 active components of Gastrodiae Rhizoma-Salviae Miltiorrhizae Radix et Rhizoma were obtained,and 158 potential targets(intersection targets)for the treatment of hypertension were screened out.Five key active ingredients:p-hydroxybenzoic acid,4-hydroxybenzylamine,tanshinone I,tanshinone,γ-sitosterol;6 potential core targets:IL6,TNF,CASP3,JUN,PTGS2,IL1B;GO functional enrichment analysis obtained 1 826 biological process items,89 cell component items,and 199 molecular function items.KEGG pathway enrichment analysis obtained 186 pathways,mainly involving neuroactive ligand-receptor interaction,calcium signaling pathway,inflammatory response(such as TNF and MAPK signaling pathway),vascular protection(such as HIF-1 and cAMP signaling pathway),oxidative stress(such as PI3K-Akt signaling pathway)and other signaling pathways.Tanshinone I and tanshinone had strong binding force to 6 potential core targets,and γ-sitosterol had strong binding force to IL6,CASP3,JUN,PTGS2 and IL1B.(2)Compared with the blank group,the systolic blood pressure of the model group was significantly increased(P<0.01).The thoracic aortic endothelial injury was obvious,the endothelial cell morphology was abnormal,swelling and exfoliated cells could be seen,the intima of the tissue was disordered,the intima structure was incomplete,and the intima was thickened.The protein expressions of GRP78,CHOP and Caspase-12 in abdominal aorta were significantly increased(P<0.01).Compared with the model group,the systolic blood pressure of the rats in the administration group was significantly decreased(P<0.01);the injury of thoracic aorta was alleviated,and the morphology,intima structure and thickness of endothelial cells were improved to varying degrees.The protein expressions of GRP78,CHOP and Caspase-12 in abdominal aorta were significantly decreased(P<0.01).Conclusion Gastrodiae Rhizoma-Salviae Miltiorrhizae Radix et Rhizoma drug pair may act on core targets such as IL6,TNF,CASP3,JUN,PTGS2,and IL1B through key active components such as p-hydroxybenzoic acid,tanshinone,and γ-sitosterol,and regulate key signaling pathways such as TNF signaling pathway,MAPK signaling pathway,PI3K-Akt signaling pathway,and PERK signaling pathway to improve vascular endothelial dysfunction,inhibit endoplasmic reticulum stress,and lower blood pressure.
10.Investigation and disposal of a cluster of suspected neonatal bloodstream infection with carbapenem-resistant Klebsiella pneumoniae
Yu-Lin LI ; Wen-Ting CHEN ; Xue-Yun LI ; Chan NIE ; Song-Tao HAN ; Li-Yuan CHEN ; Lan TANG ; Zhen-Yu WANG ; Ya-Hui LI ; Yan XU ; Xia MU
Chinese Journal of Infection Control 2024;23(8):1031-1036
Objective To investigate the causes of a cluster of suspected neonatal carbapenem-resistant Klebsiella pneumoniae(CRKP)bloodstream infection(BSI)in the neonatal department of a hospital,and provide references for the effective control of the occurrence of healthcare-associated infection(HAI).Methods Epidemiological in-vestigation on 3 neonates with CRKP BSI in the neonatal department from January 31 to February 6,2023 was per-formed.Specimens from environmental object surfaces were taken for environmental hygiene monitoring,and effec-tive control measures were taken according to the risk factors.Results From January 31 to February 6,2023,a to-tal of 60 neonates were admitted in the neonatal department,including 16 with peripherally inserted central venous catheter(PICC).Three neonates had CRKP BSI,with a incidence of 5.00%.There were 33 hospitalized neonates on the day(February 7)when the cluster of HAI was reported,with a prevalence rate of 9.09%(3/33).CRKP BSI rate in the neonatal department of this hospital from January 31 to February 6,2023 was higher than that in 2022(P<0.001).The incubators of the 3 neonates with CRKP BSI were in the same ward and adjacent to each other.The first neonate with CRKP BSI(who developed BSI on January 31)underwent PICC maintenance on Feb-ruary 4,and the other 2 neonates with PICC maintenance immediately following the first one also developed CRKP BSI.CRKP were isolated from blood culture of all 3 neonates,and antimicrobial susceptibility testing results were consistent.Conclusion The occurrence of the cluster event of neonatal CRKP BSI may be related to the failure of strict implementation of aseptic procedures during PICC maintenance and cross contamination among items.

Result Analysis
Print
Save
E-mail