1.Mid- and long-term efficacy of mitral valve plasty versus replacement in the treatment of functional mitral regurgitation: A 10-year single-center outcome
Hanqing LIANG ; Qiaoli WAN ; Tao WEI ; Rui LI ; Zhipeng GUO ; Jian ZHANG ; Zongtao YIN ; Jinsong HAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):108-113
Objective To compare the mid- and long-term clinical results of mitral valve plasty (MVP) and mitral valve replacement (MVR) in the treatment of functional mitral regurgitation (FMR). Methods Patients with FMR who underwent surgical treatment in the Department of Cardiovascular Surgery of the General Hospital of Northern Theater Command from 2012 to 2021 were collected. The patients who underwent MVP were divided into a MVP group, and those who underwent MVR into a MVR group. The clinical data and mid-term follow-up efficacy of two groups were compared. Results Finally 236 patients were included. There were 100 patients in the MVP group, including 53 males and 47 females, with an average age of (61.80±8.03) years. There were 136 patients in the MVR group, including 72 males and 64 females, with an average age of (61.29±8.97) years. There was no statistical difference in baseline data between the two groups (P>0.05). There was no statistical difference between the two groups in the extracorporeal circulation time, aortic occlusion time, postoperative hospital and ICU stay, intraoperative blood loss, or hospitalization death (P>0.05), but the time of mechanical ventilation in the MVP group was significantly shorter than that in the MVR group (P=0.022). The total follow-up rate was 100.0%, the longest follow-up was 10 years, and the average follow-up time was (3.60±2.55) years. There were statistical differences in the left atrial diameter, left ventricular end-diastolic diameter, left ventricular end-systolic diameter and cardiac function between the two groups compared with those before surgery (P<0.05). The postoperative left ventricular ejection fraction in the MVP group was statistically higher than that before surgery (P=0.002), but there was no statistical difference in the MVR group before and after surgery (P=0.658). The left atrial diameter in the MVP group was reduced compared with the MVR group (P=0.026). The recurrence rate of mitral regurgitation in the MVP group was higher than that in the MVR group, and the difference was statistically significant (10.0% vs. 1.5%, P=0.003). There were 14 deaths in the MVP group and 19 in the MVR group. The cumulative survival rate (P=0.605) and cardiovascular events-free survival rate (P=0.875) were not statistically significant between the two groups by Kaplan-Meier survival analysis. Conclusion The safety, and mid- and long-term clinical efficacy of MVP in the treatment of FMR patients are better than MVR, and the left atrial and left ventricular diameters are statistically reduced, and cardiac function is statistically improved. However, the surgeon needs to be well aware of the indications for the MVP procedure to reduce the rate of mitral regurgitation recurrence.
2.Diagnostic value of exhaled volatile organic compounds in pulmonary cystic fibrosis: A systematic review
Xiaoping YU ; Zhixia SU ; Kai YAN ; Taining SHA ; Yuhang HE ; Yanyan ZHANG ; Yujian TAO ; Hong GUO ; Guangyu LU ; Weijuan GONG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):223-229
Objective To explore the diagnostic value of exhaled volatile organic compounds (VOCs) for cystic fibrosis (CF). Methods A systematic search was conducted in PubMed, EMbase, Web of Science, Cochrane Library, CNKI, Wanfang, VIP, and SinoMed databases up to August 7, 2024. Studies that met the inclusion criteria were selected for data extraction and quality assessment. The quality of included studies was assessed by the Newcastle-Ottawa Scale (NOS), and the risk of bias and applicability of included prediction model studies were assessed by the prediction model risk of bias assessment tool (PROBAST). Results A total of 10 studies were included, among which 5 studies only identified specific exhaled VOCs in CF patients, and another 5 developed 7 CF risk prediction models based on the identification of VOCs in CF. The included studies reported a total of 75 exhaled VOCs, most of which belonged to the categories of acylcarnitines, aldehydes, acids, and esters. Most models (n=6, 85.7%) only included exhaled VOCs as predictive factors, and only one model included factors other than VOCs, including forced expiratory flow at 75% of forced vital capacity (FEF75) and modified Medical Research Council scale for the assessment of dyspnea (mMRC). The accuracy of the models ranged from 77% to 100%, and the area under the receiver operating characteristic curve ranged from 0.771 to 0.988. None of the included studies provided information on the calibration of the models. The results of the Prediction Model Risk of Bias Assessment Tool (PROBAST) showed that the overall bias risk of all predictive model studies was high, and the overall applicability was unclear. Conclusion The exhaled VOCs reported in the included studies showed significant heterogeneity, and more research is needed to explore specific compounds for CF. In addition, risk prediction models based on exhaled VOCs have certain value in the diagnosis of CF, but the overall bias risk is relatively high and needs further optimization from aspects such as model construction and validation.
3.Network pharmacology-based mechanism of combined leech and bear bile on hepatobiliary diseases
Chen GAO ; Yu-shi GUO ; Xin-yi GUO ; Ling-zhi ZHANG ; Guo-hua YANG ; Yu-sheng YANG ; Tao MA ; Hua SUN
Acta Pharmaceutica Sinica 2025;60(1):105-116
In order to explore the possible role and molecular mechanism of the combined action of leech and bear bile in liver and gallbladder diseases, this study first used network pharmacology methods to screen the components and targets of leech and bear bile, as well as the related target genes of liver and gallbladder diseases. The selected key genes were subjected to interaction network and GO/KEGG enrichment analysis. Then, using sodium oleate induced HepG2 cell lipid deposition model and
4.Efficacy and safety of endoscopic retrograde cholangiopancreatography combined with oral cholangiopancreatography in the treatment of duodenal papilla cholecystectomy
Liying TAO ; Hongguang WANG ; Qingmei GUO ; Xiang GUO ; Lianyu PIAO ; Muyu YANG ; Yong YU ; Libin RUAN ; Jianbin GU ; Si CHEN ; Yingting DU ; Xiuying GAI ; Sijie GUO
Journal of Clinical Hepatology 2025;41(3):513-517
ObjectiveTo investigate the feasibility and safety of endoscopic retrograde cholangiopancreatography (ERCP) combined with oral cholangiopancreatography in the treatment of major duodenal papilla gallbladder polyps. MethodsA retrospective analysis was performed for the clinical data of eight patients with choledocholithiasis and gallbladder polyps who underwent ERCP and combined with oral cholangiopancreatography for major duodenal papilla cholecystectomy in Center of Digestive Endoscopy, Jilin People’s Hospital, from May 2022 to June 2024, and related data were collected, including the success rate of surgery, the technical success rate of gallbladder polyp removal, the superselective method of cystic duct, the time of operation, the time of gallbladder polyp removal, and surgical complications. ResultsBoth the success rate of surgery and the technical success rate of gallbladder polyp removal reached 100%, and of all eight patients, three patients used guide wire to enter the gallbladder under direct view, while five patients received oral cholangiopancreatography to directly enter the gallbladder. The time of operation was 51.88±12.34 minutes, and the time of gallbladder polyp removal was 23.13±10.94 minutes. The diameter of gallbladder polyp was 2 — 8 mm, and pathological examination showed inflammatory polyps in three patients, adenomatous polyps in one patient, and cholesterol polyps in four patients. There were no complications during or after surgery. The patients were followed up for 2 — 27 months after surgery, and no recurrence of gallbladder polyp was observed. ConclusionOral cholangiopancreatography is technically safe and feasible in endoscopic major duodenal papilla cholecystectomy.
5.HAN Mingxiang's Experience in Staged and Syndrome-Based Treatment of Chronic Obstructive Pulmonary Disease
Jian DING ; Hui TAO ; Gang CHENG ; Weizhen GUO ; Zegeng LI ; Ya MAO ;
Journal of Traditional Chinese Medicine 2025;66(8):780-785
This paper summarizes Professor HAN Mingxiang's clinical experience in treating chronic obstructive pulmonary disease (COPD). He believes that the key pathomechanism of COPD in the acute exacerbation stage is the invasion of external pathogens triggering latent illness, while lung qi deficiency is the primary mechanism in the stable stage. The core pathological factors throughout disease progression are deficiency, phlegm, and blood stasis. Treatment emphasizes a staged and syndrome-based approach. During the acute exacerbation stage, for wind-cold invading the lung syndrome, the self-formulated Sanzi Wenfei Decoction (三子温肺汤) is used to relieve the exterior, dispel cold, warm the lung, and resolve phlegm. For phlegm-dampness obstructing the lung syndrome, Huatan Jiangqi Fomulation (化痰降气方) is prescribed to warm the lung, transform phlegm, descend qi, and calm wheezing. For phlegm-heat obstructing the lung syndrome, Qingfei Huatan Fomulation (清肺化痰方) is applied to clear heat, resolve phlegm, moisten the lung, and stop coughing. For phlegm and blood stasis interlocking syndrome, Qibai Pingfei Fomulation (芪白平肺方) is used to tonify qi, resolve phlegm, and activate blood circulation to remove stasis. During the stable stage, for lung qi deficiency syndrome, Shenqi Wenfei Decoction (参芪温肺汤) is employed to warm the lung, tonify qi, resolve phlegm, and eliminate turbidity. For lung-spleen qi deficiency syndrome, Shenqi Buzhong Decoction (参芪补中汤) is utilized to strengthen the spleen, tonify qi, and reinforce metal (lung) from earth (spleen). For lung-kidney deficiency syndrome, Shenqi Tiaoshen Fomulation (参芪调肾方) is prescribed to tonify the lung, warm yang, and regulate kidney function to calm wheezing. These strategies provide insights into the traditional Chinese medicine treatment of COPD.
6.Zhenzhu Tiaozhi Capsules Reduce Renal Lipid Deposition and Inflammation in Mouse Model of Diabetic Kidney Disease via SCAP-SREBP-1c/NLRP3 Signaling Pathway
Tao ZHANG ; Jie TAO ; Yinghui ZHANG ; Yiqi YANG ; Xianglu RONG ; Jiao GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):114-121
ObjectiveTo investigate the protective effects and mechanisms of Zhenzhu Tiaozhi capsules on the kidneys in the mouse model of diabetic kidney disease. MethodsThirty male C57BL/6J mice were selected as experimental objects. The model of diabetic kidney disease was induced by intraperitoneal injection of streptozotocin (STZ) at 40 mg·kg-1 for 5 days combined with a high-fat diet (HFD). Fasting blood glucose (FBG) ≥ 11.1 mmol·L-1, increased urine volume, and continuous appearance of proteinuria indicated successful modeling. Mice were grouped as follows: Blank, model, low- and high-dose (0.98 and 1.96 g·kg-1, respectively) Zhenzhu Tiaozhi capsules, and losartan potassium (30 mg·kg-1), with six mice in each group. After 12 weeks of continuous gavage, urine and kidney specimens were collected, and the 24-h urinary protein and the urinary albumin-to-creatinine ratio (UACR) in mice were measured. Hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and Masson staining were performed for observation of histopathological changes in kidneys. Immunofluorescence assay was employed to detect the positive expression of the podocyte marker protein nephrin. Oil red O staining was used to detect renal lipid deposition. Enzyme linked immunosorbent assay was employed to measure the levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the renal tissue. Western blot was employed to determine the expression levels of sterol regulatory element-binding protein cleavage-activating protein (SCAP), sterol regulatory element-binding protein-1c (SREBP-1c), and NOD-like receptor protein 3 (NLRP3) in the renal tissue. ResultsCompared with the blank group, the model group showed increases in 24-h urinary protein and UACR (P<0.05), glomeruli exhibiting capsule adhesion, collagen fiber deposition, mesangial proliferation, and inflammatory cell infiltration, elevated levels of IL-1β, IL-6, and TNF-α (P<0.05), reduced positive expression of nephrin (P<0.05), increased lipid deposition (P<0.05), and up-regulated expression of SCAP, SREBP-1c, and NLRP3 (P<0.05) in the renal tissue. Compared with the model group, the treatment with losartan potassium or high-dose Zhenzhu Tiaozhi capsules for 12 weeks decreased 24-h urinary protein and UACR (P<0.05), and the treatment with low-dose Zhenzhu Tiaozhi capsules for 12 weeks reduced the 24-h urinary protein (P<0.05). Pathological staining results revealed that kidney damage in mice from all treatment groups was alleviated, with reduced inflammatory infiltration, collagen fiber deposition, and mesangial proliferation, and increased positive expression of nephrin in the renal tissue (P<0.05). In addition, all the treatment groups showed reduced lipid droplets (P<0.05), lowered levels of IL-1β, IL-6, and TNF-α (P<0.05), and down-regulated expression of SCAP, SREBP-1c, and NLRP3 (P<0.05) in the renal tissue. ConclusionZhenzhu Tiaozhi capsules can ameliorate kidney damage in the mouse model of diabetic kidney disease by inhibiting the activation of the SCAP-SREBP-1c/NLRP3 signaling pathway, which reduces renal lipid deposition and inflammation.
7.Zhenzhu Tiaozhi Capsules Reduce Renal Lipid Deposition and Inflammation in Mouse Model of Diabetic Kidney Disease via SCAP-SREBP-1c/NLRP3 Signaling Pathway
Tao ZHANG ; Jie TAO ; Yinghui ZHANG ; Yiqi YANG ; Xianglu RONG ; Jiao GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):114-121
ObjectiveTo investigate the protective effects and mechanisms of Zhenzhu Tiaozhi capsules on the kidneys in the mouse model of diabetic kidney disease. MethodsThirty male C57BL/6J mice were selected as experimental objects. The model of diabetic kidney disease was induced by intraperitoneal injection of streptozotocin (STZ) at 40 mg·kg-1 for 5 days combined with a high-fat diet (HFD). Fasting blood glucose (FBG) ≥ 11.1 mmol·L-1, increased urine volume, and continuous appearance of proteinuria indicated successful modeling. Mice were grouped as follows: Blank, model, low- and high-dose (0.98 and 1.96 g·kg-1, respectively) Zhenzhu Tiaozhi capsules, and losartan potassium (30 mg·kg-1), with six mice in each group. After 12 weeks of continuous gavage, urine and kidney specimens were collected, and the 24-h urinary protein and the urinary albumin-to-creatinine ratio (UACR) in mice were measured. Hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and Masson staining were performed for observation of histopathological changes in kidneys. Immunofluorescence assay was employed to detect the positive expression of the podocyte marker protein nephrin. Oil red O staining was used to detect renal lipid deposition. Enzyme linked immunosorbent assay was employed to measure the levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the renal tissue. Western blot was employed to determine the expression levels of sterol regulatory element-binding protein cleavage-activating protein (SCAP), sterol regulatory element-binding protein-1c (SREBP-1c), and NOD-like receptor protein 3 (NLRP3) in the renal tissue. ResultsCompared with the blank group, the model group showed increases in 24-h urinary protein and UACR (P<0.05), glomeruli exhibiting capsule adhesion, collagen fiber deposition, mesangial proliferation, and inflammatory cell infiltration, elevated levels of IL-1β, IL-6, and TNF-α (P<0.05), reduced positive expression of nephrin (P<0.05), increased lipid deposition (P<0.05), and up-regulated expression of SCAP, SREBP-1c, and NLRP3 (P<0.05) in the renal tissue. Compared with the model group, the treatment with losartan potassium or high-dose Zhenzhu Tiaozhi capsules for 12 weeks decreased 24-h urinary protein and UACR (P<0.05), and the treatment with low-dose Zhenzhu Tiaozhi capsules for 12 weeks reduced the 24-h urinary protein (P<0.05). Pathological staining results revealed that kidney damage in mice from all treatment groups was alleviated, with reduced inflammatory infiltration, collagen fiber deposition, and mesangial proliferation, and increased positive expression of nephrin in the renal tissue (P<0.05). In addition, all the treatment groups showed reduced lipid droplets (P<0.05), lowered levels of IL-1β, IL-6, and TNF-α (P<0.05), and down-regulated expression of SCAP, SREBP-1c, and NLRP3 (P<0.05) in the renal tissue. ConclusionZhenzhu Tiaozhi capsules can ameliorate kidney damage in the mouse model of diabetic kidney disease by inhibiting the activation of the SCAP-SREBP-1c/NLRP3 signaling pathway, which reduces renal lipid deposition and inflammation.
8.Mechanism of Syngnathus extract in treating knee osteoarthritis of rats via regulating PI3K/Akt/mTOR signaling pathway.
Quan-Wei ZHENG ; Guo-Wei WANG ; Si-Xian WU ; Tao ZHUO ; Yi HE ; Jian-Hang LIU
China Journal of Chinese Materia Medica 2025;50(9):2442-2449
To investigate the mechanism of action of Syngnathus extract in treating knee osteoarthritis of rats, forty-eight male SD rats were randomly divided into the blank group, model group, positive drug group, as well as low-dose, medium-dose, and high-dose groups of Syngnathus extract. The rat model of knee osteoarthritis was constructed by intra-articular injection of sodium iodoacetate. After successful modeling, celecoxib(18 mg·kg~(-1)·d~(-1)) and Syngnathus extract(0.4, 0.8, and 1.6 g·kg~(-1)·d~(-1)) were given in different groups by gavage intervention for two weeks. Hematoxylin-eosin(HE) staining was used to observe the histopathological changes of cartilage in knee joints, and enzyme-linked immunosorbent assay(ELISA) was used to detect the expression level of inflammatory factors in serum. Real-time fluorescence quantitative PCR, Western blot, and immunohistochemistry were used to detect the levels of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target protein of rapamycin(mTOR) pathway-related mRNA and protein expression. The results showed that, comparied with the blank group, the cartilage surface of the knee joints of rats in the model group was uneven, with disorganized levels and defective cartilage tissue. The serum levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) and the mRNA levels of PI3K, Akt, and mTOR in cartilage tissue, as well as the protein expression levels of phosphorylated PI3K(p-PI3K)/PI3K, phosphorylated Akt(p-Akt)/Akt, phosphorylated mTOR(p-mTOR)/mTOR, and P62 were significantly increased. Beclin1 protein expression was decreased. Comparied with the model group, the number of chondrocytes in the knee joint of rats in each group of Syngnathus extract increased, and the arrangement of chondrocytes was relatively neat. The cartilage layer was restored, and the serum levels of IL-1β, IL-6, and TNF-α, as well as the mRNA expression levels of PI3K, Akt, and mTOR in cartilage tissue were significantly reduced. The protein expression levels of p-PI3K/PI3K, p-Akt/Akt, p-mTOR/mTOR, and P62 were significantly reduced in the rats in the middle-dose and high-dose groups of Syngnathus extract, and the Beclin1 protein expression was significantly increased. The protein expression levels of p-PI3K/PI3K, p-Akt/Akt, and P62 in rats in the low-dose group of Syngnathus extract were significantly reduced. In summary, Syngnathus extract may be used to treat knee osteoarthritis by inhibiting the expression of PI3K/Akt/mTOR signaling pathway, so as to alleviate the inflammatory response in the organism, enhance the autophagy activity of chondrocytes, and reduce the apoptosis of chondrocytes.
Animals
;
TOR Serine-Threonine Kinases/genetics*
;
Male
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Rats
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Humans
9.Scientific connotation of "blood stasis toxin" in hypoxic microenvironment: its "soil" function in tumor progression and micro-level treatment approaches.
Wei FAN ; Yuan-Lin LYU ; Xiao-Chen NI ; Kai-Yuan ZHANG ; Chu-Hang WANG ; Jia-Ning GUO ; Guang-Ji ZHANG ; Jian-Bo HUANG ; Tao JIANG
China Journal of Chinese Materia Medica 2025;50(12):3483-3488
The tumor microenvironment is a crucial factor in tumor occurrence and progression. The hypoxic microenvironment is widely present in tumor tissue and is a key endogenous factor accelerating tumor deterioration. The "blood stasis toxin" theory, as an emerging perspective in tumor research, is regarded as the unique "soil" in tumor progression from the perspective of traditional Chinese medicine(TCM) due to its dynamic evolution mechanism, which closely resembles the formation of the hypoxic microenvironment. Scientifically integrating TCM theories with the biological characteristics of tumors and exploring precise syndrome differentiation and treatment strategies are key to achieving comprehensive tumor prevention and control. This article focused on the hypoxic microenvironment of the tumor, elucidating its formation mechanisms and evolutionary processes and carefully analyzing the internal relationship between the "blood stasis toxin" theory and the hypoxic microenvironment. Additionally, it explored the interaction among blood stasis, toxic pathogens, and hypoxic environment and proposed micro-level prevention and treatment strategies targeting the hypoxic microenvironment based on the "blood stasis toxin" theory, aiming to provide TCM-based theoretical support and therapeutic approaches for precise regulation of the hypoxic microenvironment.
Humans
;
Tumor Microenvironment/drug effects*
;
Neoplasms/therapy*
;
Animals
;
Medicine, Chinese Traditional
;
Disease Progression
;
Drugs, Chinese Herbal
10.Mechanism of Hippocampus in treatment of knee osteoarthritis based on network pharmacology, molecular docking, and experimental verification.
Tao ZHUO ; Guo-Wei WANG ; Si-Xian WU ; Quan-Wei ZHENG ; Yi HE ; Jian-Hang LIU
China Journal of Chinese Materia Medica 2025;50(14):4026-4036
This study predicts the potential mechanism of Hippocampus in the treatment of knee osteoarthritis(KOA) through network pharmacology, with preliminary verification using molecular docking and animal experiments. The database was used to screen the active chemical components of Hippocampus and the targets of KOA, and Gene Ontology(GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis, and molecular docking were performed on the relevant core targets to preliminarily explore the potential targets and mechanisms of Hippocampus in the treatment of KOA. A rat KOA model was constructed by intra-articular injection of sodium iodoacetate, and the rats were intervened with different doses of Hippocampus decoction and celecoxib. The expression of relevant targets was detected through hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay(ELISA), RT-qPCR, and Western blot to further validate the network pharmacology results. A total of 23 drug-like components of the Hippocampus were screened, and 128 common targets with KOA were identified, involving interleukin-17(IL-17) signaling pathway, transcription factor(FoxO) signaling pathway, tumor necrosis factor(TNF) signaling pathway. Molecular docking results showed that the screened core chemical components exhibited good affinity with key targets. HE staining demonstrated that Hippocampus improved the morphology of the cartilage layer. ELISA confirmed that Hippocampus significantly reduced the levels of IL-6 and TNF-α in the serum of KOA rats. Western blot and RT-qPCR analysis showed that Hippocampus significantly reduced the expression of IL-6, TNF-α, matrix metalloproteinase(MMP) 13, IL-17A, nuclear factor κB activator 1(ACT1), tumor necrosis factor receptor-associated factor 6(TRAF6) and nuclear factor κB(NF-κB) in cartilage tissue. The results suggest that Hippocampus can alleviate the degree of joint damage in the KOA rat model induced by sodium iodoacetate. The mechanism of action is related to the inhibition of the IL-17 signaling pathway, reduction of inflammation, and inhibition of extracellular matrix(ECM) degradation.
Animals
;
Molecular Docking Simulation
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Network Pharmacology
;
Male
;
Osteoarthritis, Knee/metabolism*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Humans
;
Interleukin-17/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Hippocampus/chemistry*

Result Analysis
Print
Save
E-mail