1.Chemical and nutrient differences between medicinal material, residues, and residue compost of Moutan Cortex.
Rong-Qing ZHU ; Chun-Fang TIAN ; Xiao-Yan LAN ; Zi-Han WANG ; Xiang LI ; Li ZHOU ; Mei-Lan CHEN ; Li-Ping KANG
China Journal of Chinese Materia Medica 2023;48(23):6361-6370
Moutan Cortex(MC) residues produced after the extraction of MC can be re-extracted for active components and used to produce organic fertilizer and animal feed. However, they are currently disposed as domestic waste, which pollutes the environment. This study analyzed the chemical composition of the medicinal material, residues, and residue compost of MC by UPLC-UV-Q-TOF-MS. Furthermore, the nutrient composition of MC residues and the residue compost was analyzed. The results showed that:(1)MC residues had lower content of chemicals than the medicinal material, and content of paeonol, gallic acid, and galloylglucose in MC residues were about 1/3 of that in the medicinal material. The content of chemicals were further reduced after residue composting, and the quantitative compounds were all below the limits of detection.(2)Compared with MC residues, the residue compost showed the total nitrogen, total phosphorus, total potassium, and organic matter content increasing by 122.67%, 31.32%, 120.39%, and 32.06%, respectively. Therefore, we concluded that the MC residues can be used to re-extract active compounds such as paeonol, gallic acid, and galloylglucose. The MC residue compost is a high-quality organic fertilizer containing minimal content of chemicals and can be widely used in the cultivation of Chinese medicinal herbs.
Animals
;
Composting
;
Fertilizers
;
Soil/chemistry*
;
Hydrolyzable Tannins
;
Nutrients
;
Acetophenones
;
Drugs, Chinese Herbal
;
Paeonia
2.Proanthocyanidins alleviate lipopolysaccharide-induced inflammatory response by up-regulating SIRT1 expression and inhibiting NF-κB pathway in mouse RAW264.7 macrophages.
Yunwei WANG ; Hua YANG ; Zhihong WANG ; Yunshu YANG ; Yang LIU
Chinese Journal of Cellular and Molecular Immunology 2023;39(10):878-883
Objective To investigate the role of proanthocyanidins (PC) in lipopolysaccharide (LPS)-induced inflammatory response and its possible mechanism in RAW264.7 macrophages. Methods RAW264.7 macrophages were cultured and treated with PBS and different concentrations of PC for 24 hours, followed by 1 μg/mL LPS for 6 hours. Real-time PCR was used to detect the mRNA expression of interleukin1β (IL-1β), IL-6, monocyte chemoattractant protein 1 (MCP-1), tumor necrotic factor α (TNF-α), IL-4 and arginase 1 (Arg1) in RAW264.7 macrophages. Flow cytometry was used to detect the effects of PBS group, LPS group and PC combined with LPS group on M1 and M2 polarization of macrophages. The protein expressions of silenced information regulator 1 (SIRT1), nuclear factor kappa B p65(NF-κB p65) and acetylated NF-κB p65 (Ace-p65) were detected by Western blot analysis after different concentrations of PC treatment. Co-immunoprecipitation assay was used to detect the binding effect of SIRT1 to NF-κB p65 in macrophages treated with PC. Results Compared with PBS group, the mRNA expression of macrophage pro-inflammatory cytokines IL-1β, IL-6, MCP-1 and TNF-α decreased and the mRNA expression of anti-inflammatory factors IL-4 and Arg1 increased in PC group. Compared with LPS group, PC combined with LPS group could significantly inhibit M1 polarization and promote M2 polarization of macrophages. With the increase of PC concentration, the expression of SIRT1 was up-regulated, and NF-κB p65 protein did not change significantly. The expression of Ace-p65 protein decreased significantly when treated with high concentration of PC. Conclusion PC can significantly alleviate the LPS-induced inflammatory response by up-regulating the expression of SIRT1 and inhibiting NF-κB pathway in RAW264.7 macrophages.
Animals
;
Mice
;
Interleukin-4
;
Interleukin-6
;
Lipopolysaccharides
;
Macrophages
;
NF-kappa B
;
Proanthocyanidins
;
RNA, Messenger
;
Sirtuin 1/genetics*
;
Tumor Necrosis Factor-alpha
;
RAW 264.7 Cells
3.Research progress on the effects of proanthochanidins in reshaping microbiota and suppressing inflammation.
Wei Wei LI ; Yi Qing LIU ; Xing LIU ; Wei QU
Chinese Journal of Preventive Medicine 2023;57(10):1711-1718
Proanthocyanidins (PCs) are a class of polyphenols that are composed of flavanate monomers and their polymers, which have antibacterial and anti-inflammatory properties with very few side effects. This article reviews the mechanism by which PCs differentially regulate microbiota, reshape microflora diversity and play a role in suppressing inflammation, providing a reference for the basic research of PCs in improving female vaginal health, and is expected to provide a new idea and breakthrough for the combined use of PCs with other antibacterial drugs in the treatment of vaginitis.
Humans
;
Female
;
Microbiota
;
Inflammation
;
Proanthocyanidins/therapeutic use*
;
Anti-Bacterial Agents/therapeutic use*
4.Research progress on the effects of proanthochanidins in reshaping microbiota and suppressing inflammation.
Wei Wei LI ; Yi Qing LIU ; Xing LIU ; Wei QU
Chinese Journal of Preventive Medicine 2023;57(10):1711-1718
Proanthocyanidins (PCs) are a class of polyphenols that are composed of flavanate monomers and their polymers, which have antibacterial and anti-inflammatory properties with very few side effects. This article reviews the mechanism by which PCs differentially regulate microbiota, reshape microflora diversity and play a role in suppressing inflammation, providing a reference for the basic research of PCs in improving female vaginal health, and is expected to provide a new idea and breakthrough for the combined use of PCs with other antibacterial drugs in the treatment of vaginitis.
Humans
;
Female
;
Microbiota
;
Inflammation
;
Proanthocyanidins/therapeutic use*
;
Anti-Bacterial Agents/therapeutic use*
5.Chemome profiling of Qijiao Shengbai Capsules by UPLC-IT-TOF-MS.
Qian WANG ; Xia XU ; Ke ZHANG ; Shi-Lin ZHANG ; Li LIU ; Qing WU ; Peng-Fei TU ; Yue-Lin SONG ; Yun-Fang ZHAO ; Jun LI
China Journal of Chinese Materia Medica 2022;47(18):4938-4949
Qijiao Shengbai Capsules(QJ) are a common Miao medicine serving as an adjuvant cancer therapy in clinical practice.QJ consists of seven medicinal materials such as Astragalus membranaceus and Lespedeza buergeri.Its chemical components have not been clarified and the quality control needs to be improved.In this study, LC-IT-TOF-MS was used to comprehensively collect MS~1 and MS~2 fragment information of QJ and rapidly identify the chemical compositions.The chromatographic separation was performed on the Capcell core ADME column(2.1 mm×150 mm, 2.7 μm) with 0.1% formic acid aqueous solution(A) and acetonitrile(B) as mobile phases for gradient elution.High-resolution mass spectrometric information was obtained by scanning in the positive and negative ion ESI modes.A total of 107 compounds were structurally identified according to the deduced MS fragmentation patterns and comparison with standards and data reported in the literature, including 54 flavonoids, 16 phthalides, 13 alkaloids, 12 phenolic acids, 7 saponins, 2 coumarins, 2 condensed tannins, and 1 purine.This study clarified the chemical composition of QJ and provided references for the improvement of its quality standards and the elucidation of its medicinal substances.
Acetonitriles
;
Alkaloids
;
Capsules
;
Chromatography, High Pressure Liquid
;
Coumarins/analysis*
;
Drugs, Chinese Herbal/chemistry*
;
Flavonoids/analysis*
;
Formates
;
Proanthocyanidins/analysis*
;
Purines
;
Saponins
;
Tandem Mass Spectrometry
6.Stem cell microencapsulation maintains stemness in inflammatory microenvironment.
Yajun ZHAO ; Yilin SHI ; Huiqi YANG ; Mengmeng LIU ; Lanbo SHEN ; Shengben ZHANG ; Yue LIU ; Jie ZHU ; Jing LAN ; Jianhua LI ; Shaohua GE
International Journal of Oral Science 2022;14(1):48-48
Maintaining the stemness of the transplanted stem cell spheroids in an inflammatory microenvironment is challenging but important in regenerative medicine. Direct delivery of stem cells to repair periodontal defects may yield suboptimal effects due to the complexity of the periodontal inflammatory environment. Herein, stem cell spheroid is encapsulated by interfacial assembly of metal-phenolic network (MPN) nanofilm to form a stem cell microsphere capsule. Specifically, periodontal ligament stem cells (PDLSCs) spheroid was coated with FeIII/tannic acid coordination network to obtain spheroid@[FeIII-TA] microcapsules. The formed biodegradable MPN biointerface acted as a cytoprotective barrier and exhibited antioxidative, antibacterial and anti-inflammatory activities, effectively remodeling the inflammatory microenvironment and maintaining the stemness of PDLSCs. The stem cell microencapsulation proposed in this study can be applied to multiple stem cells with various functional metal ion/polyphenol coordination, providing a simple yet efficient delivery strategy for stem cell stemness maintenance in an inflammatory environment toward a better therapeutic outcome.
Anti-Bacterial Agents/pharmacology*
;
Capsules/pharmacology*
;
Cell Differentiation
;
Cell Encapsulation
;
Cells, Cultured
;
Ferric Compounds/pharmacology*
;
Osteogenesis/physiology*
;
Periodontal Ligament
;
Polyphenols/pharmacology*
;
Stem Cells
;
Tannins/pharmacology*
7.Research progress of tannins in traditional Chinese medicines in recent ten years.
Xuan-Xuan ZHU ; Lu BAI ; Xiao-Qian LIU ; Yao-Hua LIANG ; Li-Mei LIN ; Wei-Hong FENG ; Zhi-Min WANG ; Chun LI ; Duan-Fang LIAO
China Journal of Chinese Materia Medica 2021;46(24):6353-6365
In this paper, the newly isolated tannins were sorted after a review of the literature concerning tannins in recent 10 years, and their research progress was summarized in terms of extraction, isolation, pharmacological activity and metabolism. Hydrolysable tannins and condensed tannins are the main structural types. Modern research shows that tannins have many pharmacological effects, such as bacteriostasis, antioxidation, antitumor, antivirus and blood glucose reduction, and have broad development prospects. They are usually extracted by water, ethanol and acetone and isolated and purified by macroporous resin and gel column chromatography. The packings commonly adopted for the column chromatography mainly included Sephadex LH-20, Diaion HP-20, MCI-gel CHP-20 and Toyopearl HW-40. Modern analytical techniques such as nuclear magnetic resonance spectroscopy(NMR), fast atom bombardment mass spectrometry(FAB-MS) and circular dichroism(CD) are generally used for the structural identification of tannins. Howe-ver, their isolation, purification and structural identification are still challenging. It is necessary to use a variety of high-throughput screening methods to explore their pharmacological activities and to explore the material basis responsible for their functions through experiments in vivo.
China
;
Hydrolyzable Tannins
;
Medicine, Chinese Traditional
;
Proanthocyanidins
;
Tannins
8.Purification and component identification of total proanthocyanidins in Choerospondias axillaris pericarp.
Tong JIANG ; Tong ZHU ; Fei TENG ; Dan YANG ; Jing-Jing ZHU ; Zhi-Min WANG ; Zhi-Gao LIU ; Ji-Yan LIU
China Journal of Chinese Materia Medica 2021;46(12):2923-2930
The present study determined the quantitative markers of total proanthocyanidins in the purification of the industrial waste Choerospondias axillaris pericarp based on the comparison results of high-performance liquid chromatography(HPLC) and mass spectrometry(MS) and optimized the purification process with two stable procyanidins as markers. The adsorption and desorption of five different macroporous adsorption resins, the static adsorption kinetics curve of NKA-Ⅱ resin, the maximum sample load, and the gradient elution were investigated. The UPLC-Q-TOF-MS/MS was employed for qualitative analysis of the newly-prepared total proanthocyanidins of C. axillaris pericarp. As revealed by the results, NKA-Ⅱ resin displayed strong adsorption and desorption toward total proanthocyanidins. The sample solution(50 mg·mL~(-1)) was prepared from 70% ethanol crude extract of C. axillaris pericarp dissolved in water and 7-fold BV of the sample solution was loaded, followed by static adsorption for 12 h. After 8-fold BV of distilled water and 6-fold BV of 10% ethanol were employed to remove impurities, the solution was eluted with 8-fold BV of 50% ethanol, concentrated, and dried under reduced pressure, and purified total proanthocyanidin powder was therefore obtained. Measured by vanillin-hydrochloric acid method, the purity and transfer rate of total proanthocyanidins were 47.67% and 59.92%, respectively, indicating the feasibi-lity of the optimized process. UPLC-Q-TOF-MS/MS qualitative analysis identified 16 procyanidins in C. axillaris total proanthocyanidins. The optimized purification process is simple in operation and accurate in component identification, and it can be applied to the process investigation of a class of components that are difficult to be separated and purified. It can also provide technical support and research ideas for the comprehensive utilization of industrial waste.
Adsorption
;
Anacardiaceae
;
Chromatography, High Pressure Liquid
;
Plant Extracts
;
Proanthocyanidins/analysis*
;
Resins, Synthetic
;
Tandem Mass Spectrometry
9.Condensed tannins from roots of Indigofera stachyodes.
Yun-Feng ZHANG ; Zhi-Xiang ZHU ; Wen-Xuan WANG ; Hang ZHANG ; Li LIU ; Shi-Lin ZHANG ; Yun-Fang ZHAO ; Yue-Lin SONG ; Jiao ZHENG ; Peng-Fei TU ; Hui-Xia HUO ; Jun LI
China Journal of Chinese Materia Medica 2021;46(16):4131-4138
Eleven condensed tannins were isolated from the roots of Indigofera stachyodes by various column chromatography techniques including silica gel, octadecyl silica(ODS), Sephadex LH-20, and semi-preparative high performance liquid chromatography(HPLC). These compounds were identified on the basis of physicochemical properties, nuclear magnetic resonance(NMR) and mass spectrometry(MS) data as stachyotannin A(1), epicatechin-(2β→O→7,4β→8)-epiafzelechin-(4β→8)-catechin(2), cinnamtannin D1(3), cinnamtannin B1(4), epicatechin-(2β→O→7,4β→8)-epiafzelechin-(4α→8)-epicatechin(5), gambiriin C(6), proanthocyanidin A1(7), proanthocyanidin A2(8), aesculitannin B(9), proanthocyanidin A4(10), and procyanidin B5(11). Compound 1 is a new compound. Compounds 2-11 were isolated from Indigofera for the first time. Furthermore, compounds 1, 2, and 4-11 showed inhibitory effects on thrombin-induced ATP release in platelets.
Chromatography, High Pressure Liquid
;
Indigofera
;
Magnetic Resonance Spectroscopy
;
Plant Extracts
;
Proanthocyanidins

Result Analysis
Print
Save
E-mail