1.Pharmacological effect and mechanism of tannic acids in Paeoniae Radix Alba.
Jia-Xin DIAO ; Qi-Tong ZHENG ; Meng-Yao CHEN ; Jiang-Chuan HONG ; Min HAO ; Qing-Mei FENG ; Jun-Qi HU ; Xia-Nan SANG ; Gang CAO
China Journal of Chinese Materia Medica 2025;50(6):1471-1483
The chemical composition of Paeoniae Radix Alba(PRA) is complex, with primary secondary metabolites including monoterpenoids, tannins, triterpenoids, and flavonoids. In previous studies on the material basis of PRA, it was found that, in addition to the widely studied characteristic monoterpene glycosides, tannic acid components also play an important role in the efficacy of PRA. However, their pharmacological effects have not been thoroughly investigated. This paper reviews the tannic acid components in PRA, including pentagaloyl glucose(PGG), tetragaloyl glucose(TGG), trigaloyl glucose(TriGG), and gallic acid, along with their structures, properties, and characteristics to provide a detailed discussion of their pharmacological activities and related mechanisms, aiming to offer a theoretical basis for the material basis research and clinical application of PRA.
Paeonia/chemistry*
;
Tannins/chemistry*
;
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Plant Extracts
2.Screening of active components in Chinese medicine with effects on Escherichia coli biofilm based on molecular docking.
Can YANG ; Lei RAN ; Zhuo YANG ; Huiming HU ; Wei WEI ; Hongzao YANG ; Maixun ZHU ; Yuandi YU ; Lizhi FU ; Hongwei CHEN
Chinese Journal of Biotechnology 2024;40(11):4120-4137
By targeting the key gene csgD involved in the biofilm formation of Escherichia coli, we employed molecular docking and molecular dynamics simulation to screen the active components of Chinese medicine with inhibitory effects on the biofilm formation from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). After the anti-biofilm properties of the active components were validated in vitro, data-independent acquisition (DIA) proteomics was employed to further identify the differential proteins involved in interfering with the biofilm formation of Escherichia coli. The mechanisms of inhibition were explored with consideration to the phenotype. Through virtual screening, we identified four candidate active components, including tannic acid, narirutin, salvianolic acid B, and rosmarinic acid. Among them, tannic acid demonstrated significant inhibitory effect on the biofilm formation of E. coli. The analysis of differential proteins, combined with relevant phenotype validation, suggested that tannic acid primarily affected E. coli by intervening in pilus assembly, succinic acid metabolism, and the quorum sensing system. This study provided a lead compound for the development of new drugs against biofilm-associated infections in the future.
Biofilms/drug effects*
;
Escherichia coli/metabolism*
;
Molecular Docking Simulation
;
Drugs, Chinese Herbal/chemistry*
;
Tannins/chemistry*
;
Cinnamates/metabolism*
;
Benzofurans/chemistry*
;
Depsides/metabolism*
;
Rosmarinic Acid
;
Anti-Bacterial Agents/chemistry*
;
Escherichia coli Proteins/genetics*
;
Medicine, Chinese Traditional
3.Chemical and nutrient differences between medicinal material, residues, and residue compost of Moutan Cortex.
Rong-Qing ZHU ; Chun-Fang TIAN ; Xiao-Yan LAN ; Zi-Han WANG ; Xiang LI ; Li ZHOU ; Mei-Lan CHEN ; Li-Ping KANG
China Journal of Chinese Materia Medica 2023;48(23):6361-6370
Moutan Cortex(MC) residues produced after the extraction of MC can be re-extracted for active components and used to produce organic fertilizer and animal feed. However, they are currently disposed as domestic waste, which pollutes the environment. This study analyzed the chemical composition of the medicinal material, residues, and residue compost of MC by UPLC-UV-Q-TOF-MS. Furthermore, the nutrient composition of MC residues and the residue compost was analyzed. The results showed that:(1)MC residues had lower content of chemicals than the medicinal material, and content of paeonol, gallic acid, and galloylglucose in MC residues were about 1/3 of that in the medicinal material. The content of chemicals were further reduced after residue composting, and the quantitative compounds were all below the limits of detection.(2)Compared with MC residues, the residue compost showed the total nitrogen, total phosphorus, total potassium, and organic matter content increasing by 122.67%, 31.32%, 120.39%, and 32.06%, respectively. Therefore, we concluded that the MC residues can be used to re-extract active compounds such as paeonol, gallic acid, and galloylglucose. The MC residue compost is a high-quality organic fertilizer containing minimal content of chemicals and can be widely used in the cultivation of Chinese medicinal herbs.
Animals
;
Composting
;
Fertilizers
;
Soil/chemistry*
;
Hydrolyzable Tannins
;
Nutrients
;
Acetophenones
;
Drugs, Chinese Herbal
;
Paeonia
4.Study on antipyretic effect of rhubarb on rats and its antipyretic ingredients.
Li-Xue WANG ; Ting LIU ; Lian-Qiang HUI ; Rao-Rao LI ; Hong-Wei WU ; Yao-Hua LIANG ; Chun LI
China Journal of Chinese Materia Medica 2020;45(5):1128-1134
A combination of LC-MS technology and activity evaluation was used to identify the antipyretic ingredients in rhubarb. The rat model of fever was established with dried yeast and then was administered ethanol extract and different polar fractions of rhubarb. Next, the anal temperature of these rats was measured and recorded at 0.5, 1, 2, 3, 4 and 5 h after administration, and the inhibition rate of each part on the rise of body temperature was calculated. The inhibition rate is higher and the antipyretic effect is better. The chemical composition of the effective fraction was analyzed with UPLC-ESI-Orbitrap-MS/MS technology. Compared with the model group, the increase of body temperature of ethanol extract group all reduced at each measurement time especially after 3 h, and the inhibition rate were 38.7%(P<0.05), 78.2%(P<0.01) and 72.4%(P<0.01) at 3 h, 4 h, and 5 h after administration, respectively. Both n-butanol and water fraction showed some antipyretic activity in the early stage, with the inhibition rate of 28.1%(P<0.01) and 24.9%(P<0.05) at 1 h after administration, respectively, while other fractions were not active. Thirty-three and twelve compounds were identified from n-butanol and water fraction by LC-MS/MS analysis, respectively, including ten tannins, fifteen anthraquinone glycosides, four anthrone glycosides, one phenolic glycoside, one naphthaline derivative, one anthraquinone and one sucrose. These results revealed that rhubarb had antipyretic activity on rats, and tannin and anthraquinone glycosides were the main active ingredients inside.
Animals
;
Anthraquinones
;
Antipyretics/pharmacology*
;
Chromatography, Liquid
;
Fever/drug therapy*
;
Glycosides
;
Plant Extracts/pharmacology*
;
Plants, Medicinal/chemistry*
;
Rats
;
Rheum/chemistry*
;
Tandem Mass Spectrometry
;
Tannins
5.Research on contents of anthraquinones,dianthrones and tannins in Rheum tanguticum on PCA and CA.
Feng HUANG ; Xian-Mei YIN ; Guo-Lin TANG ; Yan LIAN ; Xiao-Fen LIU ; Xin-Mei XU ; Gui-Hua JIANG
China Journal of Chinese Materia Medica 2019;44(5):920-926
Anthraquinones,dianthrones and tannins are the main active ingredients of Rheum tanguticum. In this study the three components were determined by HPLC,and the results were analyzed by multiple comparisons,principal components analysis(PCA)and correspondence analysis(CA). The results showed that the contents of components in different growing areas and types(wild and cultivated) reached a significant level(P<0. 05). Baiyu county,Xiaojin county and Ruoergai county had obvious advantages in the accumulation of catechin hydrate,rhien and sensenoside A respectively. The principal component was different in two growing type and the wild environment was conducive to combined anthraquinones accumulation. For active components,normalized planting was better than retail cultivating. Therefore,the effect on the accumulation of chemical components in Rh. tangusticum,should be taken into full account in the selection of the cultural base of Rh. tanguticum. The standardized cultivating is superior to retail cultivating in terms of the accumulation of active ingredients,and standardized planting is inferior to the wild.
Anthraquinones
;
analysis
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal
;
analysis
;
Phytochemicals
;
analysis
;
Plants, Medicinal
;
chemistry
;
Rheum
;
chemistry
;
Tannins
;
analysis
6.Antioxidant activities of crude phlorotannins from Sargassum hemiphyllum.
Zhi-Li ZHAO ; Xiao-Qing YANG ; Zhong-Qing GONG ; Ming-Zhu PAN ; Ya-Li HAN ; Yi LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):449-455
Brown algae are well known as a source of biologically active compounds, especially those having antioxidant activities, such as phlorotannins. In this study we examined the antioxidant activities of crude phlorotannins extracts (CPEs) obtained from Sargassum hemiphyllum (SH) and fractionated according to the molecular weights. When CPEs were administrated at a dose of 30 mg/kg to Kunming mice pre-treated with carbon tetrachloride (CCl4), the levels of oxidative stress indicators in the liver, kidney and brain were significantly reduced in vivo. All the components of various molecular weight fractions of CPEs exhibited greater scavenging capacities in clearing hydroxyl free radical and superoxide anion than the positive controls gallic acid, vitamin C and vitamin E. Particularly, the components greater than 30 kD obtained from ethyl acetate phase showed the highest antioxidant capacities. These results indicated that SH is a potential source for extracting phlorotannins, the algal antioxidant compounds.
Animals
;
Antioxidants
;
isolation & purification
;
pharmacology
;
Ascorbic Acid
;
pharmacology
;
Brain
;
drug effects
;
metabolism
;
pathology
;
Carbon Tetrachloride
;
antagonists & inhibitors
;
toxicity
;
Carbon Tetrachloride Poisoning
;
drug therapy
;
metabolism
;
pathology
;
Chemical Fractionation
;
methods
;
Gallic Acid
;
pharmacology
;
Hydroxyl Radical
;
antagonists & inhibitors
;
metabolism
;
Kidney
;
drug effects
;
metabolism
;
pathology
;
Liquid-Liquid Extraction
;
methods
;
Liver
;
drug effects
;
metabolism
;
pathology
;
Male
;
Mice
;
Mice, Inbred Strains
;
Oxidation-Reduction
;
Oxidative Stress
;
drug effects
;
Phaeophyta
;
chemistry
;
Sargassum
;
chemistry
;
Superoxides
;
antagonists & inhibitors
;
metabolism
;
Tannins
;
isolation & purification
;
pharmacology
;
Vitamin E
;
pharmacology
7.Isolation of antifungal compound from Paeonia suffruticosa and its antifungal mechanism.
Yong ZHAO ; Bao-en WANG ; Shu-wen ZHANG ; Shu-min YANG ; Hong WANG ; Ai-min REN ; En-tong YI
Chinese journal of integrative medicine 2015;21(3):211-216
OBJECTIVETo isolate antifungal compound from Paeonia suffruticosa, and to find the antifungal mechanisms by observing the ultrastructural modifications of yeasts in growth phase produced by 1,2,3,4,6-penta-O-galloyl-beta-D-glucose (PGG).
METHODSPeony (Paeonia suffruticosa) root bark (PRB) was separated by solvent extraction and purified by high performance liquid chromatography (HPLC) method using analytical and preparative reversed phase C18 column on the basis of bio-assay method. In order to investigate the antifungal mechanism of PGG, Yeasts were submitted to different concentrations [3 × minimum inhibition concentration (MIC), 0.3 × MIC] for 1 h under constant stirring at 30 °C, and transmission electron microscopy was performed.
RESULTSBased on the antifungal activity of PRB on Candida glabrata CBS138, the antifungal compound were isolated in ethyl acetate layer of PRB and identified as PGG by mass spectrometry, 1H nuclear magnetic resonance (NMR) analyses, with molecular weight of 940 and molecular formular as C41H32O26. Transmission electron microscopy showed that PGG degraded the cell wall envelope.
CONCLUSIONThe results suggest that PGG may be responsible for the antifungal activity of PRB by disrupting the structure of cell wall directly.
Antifungal Agents ; chemistry ; isolation & purification ; pharmacology ; Candida ; drug effects ; ultrastructure ; Chromatography, High Pressure Liquid ; Hydrolyzable Tannins ; chemistry ; isolation & purification ; pharmacology ; Mass Spectrometry ; Microbial Sensitivity Tests ; Paeonia ; chemistry ; Plant Bark ; chemistry ; Plant Extracts ; isolation & purification ; pharmacology ; Plant Roots ; chemistry ; Proton Magnetic Resonance Spectroscopy
8.The effective parts of liangxue tongyu prescription on cooling-blood and activating-blood and analysis of chemical constituents by HPLC-MS and GC-MS.
Xi HUANG ; Guo-chun LI ; Lian YIN ; Zi-han ZHANG ; Yi-xin LIANG ; Hai-bo CHEN
Acta Pharmaceutica Sinica 2015;50(1):86-93
In order to clarify material basis of effective parts of liangxue tongyu prescription, blood-heat and blood-stasis rat model induced by dry yeast was established. The changes of rectal temperature, blood viscosity and plasma viscosity were used to evaluate the cooling-blood and activating-blood effects of liangxue tongyu prescription and its parts. Compared with the model group, the extract from liangxue tongyu prescription, its volatile oil and n-butanol part could significantly reduce rectal temperature (P<0.01), and also reduce blood viscosity and plasma viscosity to various degrees (P<0.01 or P<0.05). So volatile oil and n-butanol part were primarily identified as effective parts of liangxue tongyu prescription. By using GC-MS with normalization method of area to analyze volatile oil of liangxue tongyu prescription, 70 compounds were identified, accounting for about 92.54%, mainly as β-asarone, paeonol, α-asarone and shyobunone. 42 compounds such as peony glycosides, tannins, and iridoid glycosides were identified by HPLC-MS techniques and standard comparison. The study determined the effective parts of liangxue tongyu prescription and clarified the chemical composition providing the foundation for further studies on material basis of liangxue tongyu prescription.
Acetophenones
;
chemistry
;
Animals
;
Anisoles
;
chemistry
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal
;
chemistry
;
Gas Chromatography-Mass Spectrometry
;
Oils, Volatile
;
chemistry
;
Rats
;
Tannins
;
chemistry
9.Application of molecularly imprinted technology for separation of PGG from Guizhi Fuling capsule.
Ya-ling SONG ; Xue-jing WANG ; Fu-yong NI ; Rui GU ; Yi-wu ZHAO ; Wen-zhe HUANG ; Zhen-zhong WANG ; Xiao-jie XU ; Wei XIAO
China Journal of Chinese Materia Medica 2015;40(6):1012-1016
1,2,3,4,6-penta-O-galloyl-D-glucose (PGG) is one of the main active compounds of Guizhi Fuling capsule. Molecularly imprinted polymers (MIP) have high affinity toward template molecules synthesized by molecularly imprinted technology for its specific combined sites, which can overcome the shortcoming of traditional separation methods, such as complex operation, low efficiency, using large quantity of solvent and environmental pollution. In this paper, surface molecularly imprinted polymer (SMIP) was prepared by surface imprinting with PGG as the template molecule. Its adsorption capacity was measured by the scatchard equation. The separation of PGG from Guizhi Fuling capsule at preparatived scale was achieved with molecularly imprinted polymer as stationary phase and the purity was 90.2% by HPLC. This method can be used to prepare PGG from Guizhi Fuling capsule with large capacity and is easy to operate. It provides a new method for efficient separation and purification for other natural products.
Adsorption
;
Capsules
;
chemistry
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal
;
chemistry
;
Hydrolyzable Tannins
;
chemistry
;
isolation & purification
;
Molecular Imprinting
;
Polymers
;
chemical synthesis
;
chemistry
10.Protection and bidirectional effect of rhubarb anthraquinone and tannins for rats' liver.
Lu-shan QIN ; Hai-ping ZHAO ; Yan-ling ZHAO ; Zhi-jiel MA ; Ling-na ZENG ; Ya-ming ZHANG ; Ping ZHANG ; Dan YAN ; Zhao-fang BAI ; Yue LI ; Qing-xiu HAO ; Kui-jun ZHAO ; Jia-bo WANG ; Xiao-he XIAO
Chinese Journal of Integrated Traditional and Western Medicine 2014;34(6):698-703
OBJECTIVETo compare the bidirectional effect of rhubarb total anthraquinone (TA) and total tannins (TT) on rats' liver.
METHODSOne hundred rats were randomly divided into 10 groups, i.e., the blank group, the model group, the blank + high dose TA group, the blank +low dose TA group, the blank + high dose TT group, the blank + low dose TT group, the model + high dose TA group, the model + low dose TA group, the model +high dose TT group, and the model + low dose TT group, 10 in each group. The carbon tetrachloride (CCI4) was used to prepare the acute liver injury rat model. TA and TT of rhubarb (at 5.40 g crude drugs/kg and 14.69 g crude drugs/kg) were intragastrically administrated to rats in all groups except the blank group and the model group, once daily for 6 successive days.The general state of rats, biochemical indices such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), laminin (LN), hyaluronic acid (HA), transforming growth factor beta1 (TGF-beta1), as well pathological results of rat liver tissues. Finally the protection laws of TA and TT for rats' liver were analyzed using factor analysis.
RESULTSCompared with the blank control group, all biochemical indices increased in the blank group (P < 0.05, P < 0.01). HA also increased in the blank + high dose TA group; AST, ALT, and HA also increased in the blank +high dose TT group (P < 0.05). Compared with the model group, AST, ALT, ALP, HA, and TGF-beta1 significantly decreased in the model + low dose TA group, the model + high dose TA group, the model + low dose TT group (P < 0.05, P < 0.01). Serum AST, ALT, and ALP also decreased in the model + high dose TT group (P < 0.05, P < 0.01). Pathological results showed that mild swollen liver cells in the model + high dose TA group. Fatty degeneration and fragmental necrosis around the central veins occurred in the blank + high dose TA group. The pathological injury was inproved in the model +low dose TA group. Two common factors, liver fibrosis and liver cell injury, were extracted by using factor analysis. TA showed stronger improvement of the two common factors than TT.
CONCLUSIONSRhubarb TA and TT showed protective and harmful effects on rats' liver. At an equivalent dosage, TA had better liver protection than TT. High dose TT played a role in liver injury to some extent.
Animals ; Anthraquinones ; adverse effects ; pharmacology ; Carbon Tetrachloride ; toxicity ; Chemical and Drug Induced Liver Injury ; drug therapy ; pathology ; Dose-Response Relationship, Drug ; Female ; Liver ; drug effects ; Male ; Rats ; Rats, Sprague-Dawley ; Rheum ; chemistry ; Tannins ; adverse effects ; pharmacology

Result Analysis
Print
Save
E-mail