2.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
4.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
6.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
8.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
9.The Prevalence and Characteristics of Pre-eruptive Intracoronal Radiolucencies in Children and Adolescents
Younghyun AHN ; Yeonmi YANG ; Jaejoon HWANG ; Taesung JEONG ; Jonghyun SHIN
Journal of Korean Academy of Pediatric Dentistry 2021;48(2):160-167
The purpose of this study was to investigate the prevalence and characteristics of pre-eruptive intracoronal radiolucencies (PEIR) from panoramic radiographs in Korean children and adolescents.
This study examined panoramic radiographs of 3,000 patients aged between 5 and 14 years old who visited ten dental hospitals in Korea. The age and gender of the patients, the tooth type, the number of intracoronal radiolucent lesions, and the location and size of the lesions were recorded.
The overall prevalence of patients with PEIR was 2.5%. The difference in the presence of PEIR between both genders was not significant. Within each tooth type, the mandibular first molar showed highest prevalence of PEIR (29.6%). The central part of the crown was the most frequently observed location of PEIR (56.8%). The size of the PEIR lesions was mostly limited to less than one-third of the thickness of coronal dentin.
10.What Should Be Considered for Local Excision in Early Rectal Cancer?
Annals of Coloproctology 2019;35(4):155-157
No abstract available.
Rectal Neoplasms

Result Analysis
Print
Save
E-mail