1.Quality evaluation of Compound Cheqian Tablets based on UPLC-Q-TOF-MS/MS, network pharmacology and "double external standards" QAMS.
Kang WANG ; Pei LIU ; Si-Fan WANG ; Jie-Yu ZHANG ; Zhi-Zhi HU ; Yu-Qi MEI ; Ying-Bo YANG ; Zheng-Tao WANG ; Li YANG
China Journal of Chinese Materia Medica 2023;48(17):4675-4685
The Compound Cheqian Tablets are derived from Cheqian Power in Comprehensive Recording of Divine Assistance, and they are made by modern technology with the combination of Plantago asiatica and Coptis chinensis. To investigate the material basis of Compound Cheqian Tablets in the treatment of diabetic nephropathy, in this study, the chemical components of Compound Cheqian Tablets were characterized and analyzed by UPLC-Q-TOF-MS/MS, and a total of 48 chemical components were identified. The identified chemical compounds were analyzed by network pharmacology. By validating with previous literature, six bioactive compounds including acteoside, isoacteoside, coptisine, magnoflorine, palmatine, and berberine were confirmed as the index components for qua-lity evaluation. Furthermore, the content of the six components in the Compound Cheqian Tablets was determined by the "double external standards" quantitative analysis of multi-components by single marker(QAMS), and the relative correction factor of isoacteoside was calculated as 1.118 by using acteoside as the control; the relative correction factors of magnoflorine, palmatine, and berberine were calculated as 0.729, 1.065, and 1.126, respectively, by using coptisine as the control, indicating that the established method had excellent stability under different conditions. The results obtained by the "double external standards" QAMS approximated those obtained by the external standard method. This study qualitatively characterized the chemical components in the Compound Cheqian Tablets by applying UPLC-Q-TOF-MS/MS and screened the pharmacodynamic substance basis for the treatment of diabetic nephropathy via network pharmacology, and primary pharmacodynamic substance groups were quantitatively analyzed by the "double external stan-dards" QAMS method, which provided a scientific basis for clarifying the pharmacodynamic substance basis and quality control of Compound Cheqian Tablets.
Humans
;
Tandem Mass Spectrometry
;
Berberine/pharmacology*
;
Chromatography, High Pressure Liquid/methods*
;
Network Pharmacology
;
Diabetic Nephropathies
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Tablets
2.Ginkgo biloba Ketone Ester Tablets with different release rates prepared by fused deposition modeling 3D printing technology.
Yong-Yuan LI ; Chen CHEN ; Hai-Xia WANG ; Bei-Bei XIANG ; Zheng LI
China Journal of Chinese Materia Medica 2022;47(17):4643-4649
The present study prepared a new type of Ginkgo biloba ketone ester(GBE50) preparation from polyethylene glycol and croscarmellose sodium with good biocompatibility and a certain viscosity by fused deposition modeling(FDM)-type 3D printing technique. Firstly, a cylindrical 3D printing model with a diameter of 9.00 mm and a height of 4.50 mm was established. Subsequently, the 3D-GBE50 preparations with three paths(concentric, zigzag, and grid), different layer heights, and different filling gaps were designed and prepared after the optimization of the proportions of excipients. The morphology, size, chemical properties, and dissolution activity of the 3D-GBE50 preparations were fully characterized and investigated. The results showed that 3D-GBE50 preparations had smooth appearance, clear texture, standard friability, good thermal stability, and stable chemical properties. Moreover, the printing path, layer height, and filling gap were directly related to the release rate of 3D-GBE50 preparations. The dissolution of 3D-GBE50 tablets with zigzag printing path was the fastest, while the dissolution rates of 3D-GBE50 tablets with concentric circle and grid-shaped printing paths were slower than that of commercially available G. biloba Ketone Ester Tablets. In addition, the dissolution of 3D-GBE50 tablets was faster with higher layer height and wider filling gap. As revealed by the results, th FDM-type 3D printing technique can flexibly regulate the drug release activity via controlling the printing parameters, providing effective ideas and methods for the pre-paration of personalized pharmaceutical preparations.
Carboxymethylcellulose Sodium
;
Esters
;
Excipients/chemistry*
;
Ginkgo biloba
;
Ketones
;
Polyethylene Glycols/chemistry*
;
Printing, Three-Dimensional
;
Tablets/chemistry*
;
Technology, Pharmaceutical/methods*
3.Key techniques for granulation and flavor masking of innovative Chinese medicinal preparations for children: a review.
Chen-Hui WU ; Yan-Jun YANG ; Mao-Mao ZHU ; Bing YANG ; Jun LIU ; Jing ZHAO ; Xiao-Bin JIA ; Liang FENG
China Journal of Chinese Materia Medica 2022;47(21):5708-5716
There are many kinds of pharmaceutical preparations for children in China, which are generally divided into oral solid preparations and oral liquid preparations. Solid preparations, such as microtablets, pellets, dispersible tablets, and fine granules, have become the development trend of pediatric drugs. Liquid preparations mainly include syrup, suspension, oral solution, and drops. The poor taste and the treatment of drugs in children of different ages are the key factors affecting the efficacy, safety, and compliance of pediatric drugs. To reduce the risk caused by the fluctuation of blood concentration and improve the oral compliance of pediatric drugs, it is urgent to develop new techniques for granulation and flavor maskingto improve the poor taste of solid preparations. For liquid pre-parations with poor taste, the flavor correction technique should be used. This paper summarized the new pharmaceutical techniques for granulation and flavor masking, and it was found that sustained/controlled-releasegranules, fine granules, and chewing solid mini-tablets became the mainstream of oral solid preparations for children. Generally, multiparticle preparation, coating, microencapsulation, and other granulating techniques were involved in these preparations. Granulation and flavor masking are closely related and synergetic. Flavor masking techniques mask the bitter taste of Chinese medicine from four aspects, including confusing the brain taste, changing the compounds, reducing the exposure of bitter molecules to bitter receptors in the mouth, and numbing the taste cells to increase the threshold of bitter perception. At present, the main drugs for children on the market mainly inhibit the oral release of bitter drugs.
Child
;
Humans
;
Chemistry, Pharmaceutical/methods*
;
Administration, Oral
;
Tablets
;
Taste
;
China
4.Preparation and in vitro evaluation of FDM 3D printed theophylline tablets with personalized dosage.
A KAIDIERYA ; R G ZHANG ; H N QIAN ; Z Y ZOU ; Y DANNIYA ; T Y FAN
Journal of Peking University(Health Sciences) 2022;54(6):1202-1207
OBJECTIVE:
To explore the feasibility of preparing different doses of tablets for personalized treatment by fused deposition modeling (FDM) 3D printing technology, and to evaluate the in vitro quality of the FDM 3D printed tablets.
METHODS:
Three different sizes of hollow tablets were prepared by fused deposition modeling 3D printing technology with polyvinyl alcohol (PVA) filaments. Theophylline was chosen as the model drug. In the study, 20 mg, 50 mg and 100 mg of theophylline was filled into the cavity of the tablets, respectively. The microscopic morphology of the tablets was observed by scanning electron microscopy (SEM). The weight variation of the tablets was investigated by weighing method. The hardness of the tablets was measured by tablet hardness tester. The contents of the drugs in the tablets were determined by ultraviolet and visible spectrophotometry (UV-Vis), and the dissolution apparatus was used to assay the in vitro drug release of the tablets.
RESULTS:
The prepared FDM 3D printed tablets were all in good shape without printing defects. And there was no leakage phenomenon. The diameter and thickness of the tablets were consistent with the design. The layers were tightly connected, and the fine structure of the formulation could be clearly observed without printing defects by scanning electron microscopy. The average weight of the three sizes of tablets was (150.5±2.3) mg, (293.6±2.6) mg and (456.2±5.6) mg, respectively. The weight variation of the three sizes of tablets were boss less than 5%, which met the requirements; The hardness of the tablets all exceeded 200 N; The contents of theophylline in the three tablets were 98.0%, 97.2% and 97.9% of the dosage (20 mg, 50 mg and 100 mg), and the relative standard deviation (RSD) was 1.06%, 1.15% and 0.63% respectively; The time for 80% drug released from the three dosage of tablets was within 30 min.
CONCLUSION
Three different dosages of theophylline tablets were successfully prepared by FDM 3D printing technology in this study. The exploration may bring beneficial for the preparation of personalized dose preparations. We expect that with the development of 3D printing technology, FDM 3D printed personalized tablets can be used in the clinic as soon as possible to provide personalized treatment for patients.
Humans
;
Theophylline/chemistry*
;
Tablets/chemistry*
;
Drug Liberation
;
Printing, Three-Dimensional
;
Polyvinyl Alcohol/chemistry*
;
Technology, Pharmaceutical/methods*
5.Qualitative and quantitative analyses of Tripterygium hypoglaucum in Yinning Tablets, a compound traditional Chinese herbal preparation.
Jiang Jie WU ; Qin YANG ; Chu Qi HOU ; Fu Ling WU ; Long WANG ; Wen Qin LIU ; Lian Bing HOU
Journal of Southern Medical University 2022;42(6):949-954
OBJECTIVE:
To conduct qualitative and quantitative analyses of Tripterygium hypoglaucum in Yinning Tablets, a compound preparation of traditional Chinese herbal medicine.
METHODS:
Thin-layer chromatography (TLC) was used for qualitative analysis of Tripterygium hypoglaucum in Yining Tablets and the analytical protocols were optimized. High-performance liquid chromatography (HPLC) was used to quantitatively analyze the content of triptolide (the main active ingredient of Tripterygium hypoglaucum) in Yinning Tablets.
RESULTS:
The results of TLC analysis showed that the test sample of Yinning Tablets and the positive control samples both produced clear, well separated spots without obvious interference in the blank samples. Assessment of the influences of the thin-layer plates from different manufacturers, temperature and humidity on the test results demonstrated good durability of the test. HPLC analysis of triptolide showed a good linear relationship within the concentration range of 1-100 μg/mL (regression equation: A=22.219C-19.165, r=0.9999); the contents of triptolide in 3 batches of Yinning tablets were 0.34, 0.34, and 0.28 μg per tablet, all within the range of 0.28-0.34 μg per tablet. It was finally determined that each Yinning tablet should not contain more than 0.6 μg of triptolide.
CONCLUSION
TLC and HPLC are simple, accurate, durable and specific for qualitative and quantitative analyses of Tripterygium hypoglaucum in Yinning Tablets.
China
;
Chromatography, High Pressure Liquid/methods*
;
Plant Preparations
;
Tablets
;
Tripterygium/chemistry*
6.Preparation and in vitro evaluation of fused deposition modeling 3D printed compound tablets of captopril and hydrochlorothiazide.
Zhi Sheng LI ; Hao Nan QIAN ; Tian Yuan FAN
Journal of Peking University(Health Sciences) 2022;54(3):572-577
OBJECTIVE:
To explore the feasibility of preparing compound tablets for the treatment of hypertension by fused deposition modeling (FDM) 3D printing technology and to evaluate the quality of the printed compound tablets in vitro.
METHODS:
Polyvinyl alcohol (PVA) filaments were used as the exci-pient to prepare the shell of tablet. The ellipse-shaped tablets (the length of major axes of ellipse was 20 mm, the length of the minor axes of ellipse was 10 mm, the height of tablet was 5 mm) with two separate compartments were designed and printed using FDM 3D printer. The height of layer was 0.2 mm, and the thickness of roof or floor was 0.6 mm. The thickness of shell was 1.2 mm, and the thickness of the partition wall between the two compartments was 0.6 mm. Two cardiovascular drugs, captopril (CTP) and hydrochlorothiazide (HCT), were selected as model drugs for the printed compound tablet and filled in the two compartments of the tablet, respectively. The microscopic morphology of the tablets was observed by scanning electron microscopy (SEM). The weight variation of the tablets was investigated by electronic scale. The hardness of the tablets was measured by a single-column mechanical test system. The contents of the drugs in the tablets were determined by high performance liquid chromatography (HPLC), and the dissolution apparatus was used to measure the in vitro drug release of the tablets.
RESULTS:
The prepared FDM 3D printed compound tablets were all in good shape without printing defects. The average weight of the tablets was (644.3±6.55) mg. The content of CTP and HCT was separately (52.3±0.26) mg and (49.6±0.74) mg. A delayed in vitro release profile was observed for CTP and HCT, and the delayed release time for CTP and HCT in vitro was 20 min and 40 min, respectively. The time for 70% of CTP and HCT released was separately 30 min and 60 min.
CONCLUSION
CTP and HCT compound tablets were successfully prepared by FDM 3D printing technology, and the printed tablets were of good qualities.
Captopril
;
Cytidine Triphosphate
;
Drug Liberation
;
Hydrochlorothiazide
;
Printing, Three-Dimensional
;
Tablets/chemistry*
;
Technology, Pharmaceutical/methods*
7.Real time release testing of disintegration time of uncoated Tianshu Tablets.
Chun-Yan XIA ; Bing XU ; Fang-Fang XU ; Xin ZHANG ; Qing WANG ; Hui DU ; Le-Wei BAO ; Zhen-Zhong WANG ; Yan-Jiang QIAO ; Wei XIAO
China Journal of Chinese Materia Medica 2020;45(2):250-258
In this paper, a real time release testing(RTRT) model for predicting the disintegration time of Tianshu tablets was established on the basis of the concept of quality by design(QbD), in order to improve the quality controllability of the production process. First, 49 batches of raw materials and intermediates were collected. Afterwards, the physical quality attributes of all materials were comprehensively characterized. The partial least square(PLS) regression model was established with the 72 physical quality attributes of raw materials and intermediates as input and the disintegration time(DT) of uncoated tablets as output. Then, the variable screening was carried out based on the variable importance in the projection(VIP) indexes. Moisture content of raw materials(%HR), tapped density of wet masses(D_c), hygroscopicity of dry granules(%H), moisture content of milling granules(%HR) and Carr's index of mixed granules(IC) were determined as the potential critical material attributes(pCMAs). According to the effects of interactions of pCMAs on the performance of the prediction model, it was finally determined that the wet masses' D_c and the dry granules'%H were critical material attributes(CMAs). A RTRT model of the disintegration time prediction was established as DT=34.09+2×D_c+3.59×%H-5.29×%H×D_c,with R~2 equaling to 0.901 7 and the adjusted R~2 equaling to 0.893 3. The average relative prediction error of validation set for the RTRT model was 3.69%. The control limits of the CMAs were determined as 0.55 g·cm~(-3)
Drug Compounding
;
Drug Liberation
;
Drugs, Chinese Herbal/chemistry*
;
Least-Squares Analysis
;
Solubility
;
Tablets
8.Evaluation and classification of dissolution behavior and capability of Chinese medicine granules based on an inline turbidity sensor.
Jia-Qi YU ; Bing XU ; Yu-Yan HUANG ; Zhi-Qiang ZHANG ; Sheng-Yun DAI ; Jing FU ; Yan-Jiang QIAO
China Journal of Chinese Materia Medica 2020;45(2):259-266
In this paper, the inline turbidity sensor technology was used to quantify the turbidity of the solution during the dissolution of Chinese medicine granules. The probe measurement position and the magnetic stirring speed were optimized. As a result, the stirring speed was 400 r·min~(-1), and the probe position was at 1/4 of the diameter of the beaker. The measurement results were accurate and reliable. Totally 105 batches of commercially available Chinese medicine granules were collected and dissolved according to the requirements of the Chinese Pharmacopoeia. At the time point of 5 min, 57 batches of granules were completely dissolved, and the corresponding turbidity values ranged between 0-70 FTU; 32 batches of granules showed a slight turbidity, and the corresponding turbidity values ranged between 70-350 FTU; 14 batches of granule solution were turbid, and the corresponding turbidity values ranged between 350-2 000 FTU; two batches of granule solution were heavily turbid, and the corresponding turbidity values were >2 000 FTU. Among the above results, the number of batches in line with the pharmacopoeia dissolution requirement was 84.76%, and the dissolution of some granules still needed to be improved. The turbidity sensor recorded the change curve of turbidity value over time(solubility behavior curve). The degree of important of disintegration and dissolution during the dissolution process showed disintegration > dissolution, disintegration≈dissolution, disintegration < dissolution. The dissolution behavior of the granules can be classified into three categories. The analysis of the mechanism in the process of granule solubility provides a basis for product process improvement.
Medicine, Chinese Traditional
;
Pharmaceutical Preparations/chemistry*
;
Solubility
;
Tablets
;
Technology, Pharmaceutical
9.Comparative study on chronic multiple organ injury in normal rats caused by high dose of Tripterygium Glycosides Tablets from 6 different manufacturers.
Yi-Qun LI ; Chun-Fang LIU ; Ke-Xin JIA ; Jin-Xia WANG ; Jing-Xia WANG ; Jing-Xuan ZHANG ; Hong-Wei ZHU ; Teng-Teng XU ; Rui-Rui MING ; Ting WANG ; Na LIN
China Journal of Chinese Materia Medica 2020;45(4):746-754
The aim of this paper was to compare different effects of Tripterygium Glycosides Tablets from 6 different manufacturers on multiple organ injuries in rats and to explore mechanism of hepatotoxicity preliminarily from the perspective of apoptosis and oxidative stress. Rats were randomly divided into the groups normal, Zhejiang, Hunan, Hubei, Shanghai, Jiangsu and Fujian(7 groups with 16 rats in each group, sex in half). Rats were given Tripterygium Glycosides Tablets at 144 mg·kg~(-1)·d~(-1)(16 times the clinical equivalent dose) once a day according to its corresponding group like rats in Zhejiang group was given Tripterygium Glycosides Tablets from Zhejiang manufactures continuously for 20 days with the life and death situation of mice to be observed, then rats were executed to detect various indicators. RESULTS:: showed that 8 female rats in Zhejiang group died after 15 days of administration, the serum NEUT of rats in Hubei, Fujian and Shanghai groups was significantly lower than that of normal rats. The serum AST, ALT and/or TBiL levels were increased in all rats, and serum BUN and/or CRE levels of rats were also increased in Hunan, Hubei, Fujian and Shanghai groups. In dosage groups, testicular and ovarian coefficients of rats were reduced, the number of sperm were significant decreased while the rate of sperm malformation increased and sperm dynamics parameters of normal, especially in Jiangsu and Zhejiang groups. Liver histopathology and apoptosis of liver cells were observed in dosage groups, especially in Jiangsu and Hubei groups. In liver, Nrf2, HO-1 and Bcl-2 were inhibited and the protein expression level of Bax were increased simultaneously in dosage groups. These results showed that all Tripterygium Glycosides Tablets from 6 manufacturers could lead to chronic multiple organ injuries with disparate specialties in rats, and Jiangsu and Zhejiang groups were more toxic. It could be the mechanism promoting mitochondrial mediated Bax/Bcl-2 cell apoptosis signaling pathway and negatively regulating Nrf2/HO-1 oxidative stress signaling pathway that Tripterygium Glycosides Tablets from 6 different manufacturers resulted in chronic liver injury, the results above were for reference only in subsequent study.
Animals
;
Apoptosis
;
China
;
Drugs, Chinese Herbal/pharmacology*
;
Female
;
Glycosides/pharmacology*
;
Male
;
Oxidative Stress
;
Random Allocation
;
Rats
;
Signal Transduction
;
Tablets
;
Tripterygium/chemistry*
10.Effect of Tripterygium Glycosides Tablets on reproductive toxicity in male rats with Ⅱ type collagen induced arthritis.
Yuan-Fang FAN ; Ying XU ; Xiao-Hui SU ; Li-Ling LIU ; Ya-Ge TIAN ; Yuan ZHAO ; Xiang-Ying KONG ; Na LIN
China Journal of Chinese Materia Medica 2020;45(4):755-763
The aim of this paper was to observe the toxic effect of Tripterygium Glycosides Tablets on the reproductive system of Ⅱ type collagen induced arthritis(CIA) male rats, and to explore the toxic mechanism preliminarily. Fifty SD rats were randomly divided into normal control group(Con), model group(CIA), Tripterygium Glycosides Tablets clinical equivalent dose groups of 1, 2, 4 times(9, 18, 36 mg·kg~(-1)), 10 rats in each group, and were given by gavage once a day for 42 days after the first immunization. The organ index of testis and epididymis were calculated on days 21 and 42. Histopathological and morphological changes of testis and epididymis were observed under optical microscope. Sperm count, sperm malformation rate and sperm kinetic parameters in epididymal tissues were observed by computer assisted sperm analysis(CASA). The concentration of testosterone(T), nitric oxide synthase(NOS) and aromatase(CYP19 A1) in serum were detected by ELISA. Immunohistochemistry was used to observe the expression of Bax and Bcl-2 related proteins in the apoptosis pathway of testis and epididymis. The results showed that, compared with Con group, CIA group significantly increased the rate of testicular spermatogenic tubule lesion and sperm malformation, decreased the average path speed, and no significant changes were observed in other groups. Tripterygium Glycosides Tablets at 4 times clinical equivalent dose can significantly reduce the testis index(P<0.01), each dose group can reduce the epididymis index(P<0.05). Each dose group of Tripterygium Glycosides Tablets could cause different degrees of damage to the testis and epididymis, the proportion of testicular histopathology lesions increased, the number of spermatogenic cells in the seminiferous tubules decreased, and so on. It could reduce the number of sperm, increase the rate of sperm deformity, make the parameters of sperm dynamics abnormal, and so on. Tripterygium Glycosides Tablets at 4 times dose could significantly reduce the content of serum sex hormone T and key enzyme of androgen synthesis(P<0.05 or P<0.01), but had no effect on CYP19 A1. The expression of Bax and Bcl-2 in testis and epididymis were increased by 2 and 4 times doses of Tripterygium Glycosides Tablets(P<0.05, P<0.01 or P<0.01). The results showed that 21 d administration of Tripterygium Glycosides Tablets at equal or higher doses could induce obvious toxic effect to the reproductive organs of CIA male rats, and lower the level of serum sex hormone T and the key enzyme of androgen synthesis, NOS. The mechanism of abnormal changes of Bax and Bcl-2 in Testis and epididymis is still to be elucidated.
Animals
;
Arthritis, Experimental
;
Drugs, Chinese Herbal/toxicity*
;
Genitalia, Male/drug effects*
;
Glycosides/toxicity*
;
Male
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Spermatozoa/pathology*
;
Tablets
;
Testis/pathology*
;
Tripterygium/chemistry*

Result Analysis
Print
Save
E-mail