1.Influence of eucalyptol on biological effects of spleen cold and spleen heat syndromes in rats and mechanism of regulating spleen channel with its warm nature based on TRP ion channel.
Xing-Yu ZHAO ; Yi LI ; Xiao-Fang WU ; Qi ZHANG ; Lin-Ze LI ; Yin-Ming ZHAO ; Chun WANG ; Jian-Jun ZHANG ; Lin-Yuan WANG
China Journal of Chinese Materia Medica 2025;50(8):2022-2031
This paper aims to investigate the influence of eucalyptol on the biological effects of spleen cold and spleen heat syndromes in rats and its regulation of transient receptor potential vanilloid 1(TRPV1), transient receptor potential melastatin 8(TRPM8), and uncoupling protein 1(UCP1), so as to explore the cold-heat properties of eucalyptol. Rats were randomly divided into groups as follows: blank group, spleen cold syndrome model group, spleen cold syndrome+Atractylodis Rhizoma group, spleen cold syndrome + low-dose eucalyptol group, and spleen cold syndrome+high-dose eucalyptol group, as well as blank group, spleen heat syndrome model group, spleen heat syndrome+Coptidis Rhizoma group, spleen heat syndrome + low-dose eucalyptol group, and spleen heat syndrome + high-dose eucalyptol group. Spleen cold and spleen heat syndromes were induced by disorders of hunger and satiety combined with bitter cold drugs, as well as a high-fat diet combined with liquor. Except for the blank and model groups, the other groups were administered once a day during the modeling process for 14 consecutive days. The general condition and body weight of rats in each group were observed, and the histopathological morphology of the gastric antrum and small intestine was observed by hematoxylin-eosin(HE) staining. The contents of cyclic adenosine monophosphate(cAMP), cyclic guanosine monophosphate(cGMP), triiodothyronine(T3), thyroxine(T4), Na~+-K~+-ATPase, total cholesterol(TC), triglyceride(TG), gastrin(GAS), motilin(MTL), D-xylose, and other related indices were detected in rats. The expression levels of TRPV1, TRPM8, and UCP1 in small intestine tissue of rats with spleen cold syndrome were detected. The results showed that eucalyptol had a certain degree of improvement in the overall state and body weight of rats with spleen cold syndrome. Compared with the spleen cold syndrome model group, high-dose eucalyptol significantly increased the levels of serum cAMP, cAMP/cGMP, TG, and TC in rats with spleen cold syndrome(P<0.05, P<0.01), decreased the content of cGMP, and significantly elevated the levels of gastrointestinal function-related indicators GAS, MTL, and D-xylose(P<0.05, P<0.01). Low-dose eucalyptol significantly increased the level of cAMP/cGMP in the serum and Na~+-K~+-ATPase levels in hepatic tissue(P<0.05, P<0.01), and significantly increased the levels of GAS and D-xylose(P<0.01). Eucalyptol showed similar effects to Atractylodis Rhizoma with a warm nature on rats with spleen cold syndrome. Compared with the spleen heat syndrome model group, the high-dose and low-dose eucalyptol groups showed a trend of increase in gastrointestinal indicators, with no significant changes in other indicators. In addition, high-dose eucalyptol increased the expression of TRPV1 and UCP1 and decreased the expression of TRPM8 in the small intestine tissue of rats with spleen cold syndrome. Eucalyptol could affect the cyclic nucleotide and material energy metabolism levels of rats with spleen cold syndrome and had a certain improvement effect on their gastrointestinal digestion and absorption function, thereby improving spleen cold syndrome. Eucalyptol had no significant improvement effect on rats with spleen heat syndrome, suggesting that eucalyptol may have a warm nature and regulate spleen meridians. It is speculated that eucalyptol may exhibit its medicinal properties by activating the TRPV1 pathway, promoting the expression of UCP1, and inhibiting the TRPM8 channel.
Animals
;
Rats
;
Spleen/metabolism*
;
Male
;
TRPV Cation Channels/genetics*
;
Rats, Sprague-Dawley
;
Eucalyptol/administration & dosage*
;
TRPM Cation Channels/genetics*
;
Uncoupling Protein 1/genetics*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Cold Temperature
;
Cyclic GMP/metabolism*
2.Medicinal properties and mechanisms of p-cymene with mild and warm nature based on deficiency-cold and deficiency-heat syndrome models.
Xiao-Fang WU ; Yi LI ; Xing-Yu ZHAO ; Lin-Ze LI ; Qi ZHANG ; Yin-Ming ZHAO ; Ying-Li ZHU ; Chun WANG ; Jian-Jun ZHANG ; Lin-Yuan WANG
China Journal of Chinese Materia Medica 2025;50(8):2032-2040
This paper aims to study the effect of p-cymene on mice with deficiency-cold syndrome induced by hydrocortisone and deficiency-heat syndrome induced by dexamethasone and explore the medicinal properties and mechanism of p-cymene with mild and warm nature based on the dominant characteristics of the two-way applicable conditions of mild drugs. A total of 80 KM mice were randomly divided into blank group, deficiency-cold syndrome model group, deficiency-cold syndrome + ginseng group, and deficiency-cold syndrome + low-dose and high-dose p-cymene groups, as well as blank group, deficiency-heat syndrome model group, deficiency-heat syndrome + American ginseng group, and deficiency-heat syndrome + low-dose and high-dose p-cymene groups. Hydrocortisone and dexamethasone solution were intragastrically administered for 14 consecutive days to prepare deficiency-cold syndrome and deficiency-heat syndrome models. Except for the blank group and the model group intragastrically administered with normal saline, the other groups were intragastrically administrated with drugs for 14 days. The levels of cyclic adenosine monophosphate(cAMP), cyclic guanosine monophosphate(cGMP), triiodothyronine(T3), thyroxine(T4), total cholesterol(TC), triglyceride(TG), immunoglobin G(IgG), and immunoglobin M(IgM) in serum, as well as the activity of Na~+-K~+-ATPase in liver tissue were detected. The expression of transient receptor potential melastatin 8(TRPM8), transient receptor potential vanilloid 1(TRPV1), and uncoupling protein 1(UCP1) in brown adipose tissue of deficiency-cold syndrome model after intervention with p-cymene was studied. The results showed that p-cymene could effectively improve the levels of cAMP, cAMP/cGMP, TC, IgM, and IgG in serum and the activity of Na~+-K~+-ATPase in liver tissue of mice with deficiency-cold syndrome and reduce the content of cGMP. The effects on T3, T4, and TG were not statistically significant. At the same time, p-cymene could reduce the levels of cAMP, cAMP/cGMP, and T4 in serum and the activity of Na~+-K~+-ATPase in liver tissue of mice with deficiency-cold syndrome and increase the levels of cGMP, IgM, and IgG, and it had no effect on T3, TC, and TG. In addition, p-cymene could up-regulate the expression of TRPV1 and UCP1 in brown fat of mice with deficiency-cold syndrome and down-regulate the expression of TRPM8. In summary, p-cymene could significantly regulate the syndrome indexes of mice with deficiency-cold syndrome, and some indexes of mice with deficiency-heat syndrome could be improved, but the effects on lipid metabolism and energy metabolism indexes were not obvious, indicating that the regulation effect of p-cymene on deficiency-cold syndrome model was more prominent and that the medicinal properties of p-cymene were mild and warm. The regulation of TRPV1/TRPM8/UCP1 channel expression may be the molecular biological mechanism of p-cymene with mild and warm nature affecting the energy metabolism of the body.
Animals
;
Cymenes
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Disease Models, Animal
;
Humans
;
Cyclic AMP/metabolism*
;
Monoterpenes/administration & dosage*
;
Liver/metabolism*
;
Cyclic GMP/metabolism*
;
TRPV Cation Channels/genetics*
;
Uncoupling Protein 1/genetics*
3.Sangma Zhike Formula alleviates airway inflammation and hyperresponsiveness in rats with postinfectious cough by inhibiting the TRPV1-SP/CGRP and pyroptosis pathways.
Qinjun YANG ; Hongyu ZHU ; Yuan GAO ; Cheng YANG ; Tong LIU ; Lu ZHANG ; Jiabing TONG ; Zegeng LI
Journal of Southern Medical University 2025;45(9):1830-1839
OBJECTIVES:
To investigate the therapeutic mechanism of Sangma Zhike Formula (SMZKF) for relieving cough sensitivity and airway inflammation in rats with postinfectious cough (PIC).
METHODS:
Male SD rat models were established by cigarette smoke exposure with intranasal LPS instillation and capsaicin aerosol inhalation. From day 19 following the start of PIC modeling, the rats received daily treatment with saline (model group), low-, medium-, and high-dose SMZKF, and compound methoxyphenamine (ASM) via gavage for 10 consecutive days (n=8). The assessments included behavioral changes, cough sensitivity (latency and frequency), lung histopathology, inflammatory cell counts and cytokine/mediator levels in the bronchoalveolar lavage fluid (BALF), oxidative stress markers in the lung tissue, and expressions of proteins related with cough hypersensitivity and pyroptosis.
RESULTS:
The rat models of PIC exhibited reduced mental alertness, accelerated respiration, and pronounced symptoms such as coughing, sneezing, and facial scratching with significantly shortened cough latency and increased 5-min cough frequency. Histopathological analysis revealed collapsed alveolar structures, thickened alveolar septa, and extensive inflammatory cell infiltration in the bronchi and peribronchial regions, accompanied by elevated bronchial and alveolar inflammation scores of the rat models. In the BALF, inflammatory cell counts and the levels of IL-1β, TNF-α, IL-6, COX-2, PGE-2, and TXA-2 were all markedly elevated, and the pulmonary oxidative stress markers (ROS and MDA) and myeloperoxidase (MPO) activity were also significantly increased. The pulmonary expressions of cough hypersensitivity-related proteins (TRPV1, SP, CGRP, and NK1R) and pyroptosis-associated markers (P-NF-κB, NLRP3, ACS, cleaved caspase-1, cleaved IL-1β, and GSDMD-N) were significantly upregulated in the model group. SMZKF interventions significantly ameliorated these pathological changes in the rat models, and high-dose SMZKF produced a similar therapeutic efficacy to that of ASM.
CONCLUSIONS
SMZKF alleviates cough sensitivity and airway inflammation in PIC rats possibly by inhibiting TRPV1-mediated SP/NK1R signaling and the NLRP3/caspase-1/GSDMD pyroptosis pathway.
Animals
;
Cough/metabolism*
;
Rats, Sprague-Dawley
;
Pyroptosis/drug effects*
;
Male
;
TRPV Cation Channels/metabolism*
;
Rats
;
Drugs, Chinese Herbal/pharmacology*
;
Inflammation
;
Signal Transduction
4.Functional and distinct roles of Piezo2-mediated mechanotransduction in dental primary afferent neurons.
Pa Reum LEE ; Kihwan LEE ; Ji Min PARK ; Shinae KIM ; Seog Bae OH
International Journal of Oral Science 2025;17(1):45-45
Piezo2, a mechanosensitive ion channel, serves as a crucial mechanotransducer in dental primary afferent (DPA) neurons and is potentially involved in hypersensitivity to mild mechanical irritations observed in dental patients. Given Piezo2's widespread expression across diverse subpopulations of DPA neurons, this study aimed to characterize the mechanosensory properties of Piezo2-expressing DPA neurons with a focus on distinct features of voltage-gated sodium channels (VGSCs) and neuropeptide profiles. Using whole-cell patch-clamp recordings, we observed mechanically activated action potentials (APs) and classified AP waveforms based on the presence or absence of a hump during the repolarization phase. Single-cell reverse transcription polymerase chain reaction combined with patch-clamp recordings revealed specific associations between AP waveforms and molecular properties, including tetrodotoxin-resistant VGSCs (NaV1.8 and NaV1.9) and TRPV1 expression. Reanalysis of the transcriptomic dataset of DPA neurons identified correlations between neuropeptides-including two CGRP isoforms (α-CGRP and β-CGRP), Substance P, and Galanin-and the expression of NaV1.8 and NaV1.9, which were linked to defined AP subtypes. These molecular associations were further validated in Piezo2+ DPA neurons using fluorescence in situ hybridization. Together, these findings highlight the electrophysiological and neurochemical heterogeneity of Piezo2-expressing DPA neurons and their specialized roles in distinct mechanosensory signal transmission.
Ion Channels/physiology*
;
Mechanotransduction, Cellular/physiology*
;
Animals
;
Neurons, Afferent/metabolism*
;
Patch-Clamp Techniques
;
Mice
;
TRPV Cation Channels/metabolism*
;
Action Potentials
;
Rats
5.Improvement effect of Shegan Mahuang Decoction on rats with cold-induced asthma based on TRPV1/NRF-1/mtTFA pathway.
Qiu-Hui LI ; Xiao-Xiao SHAN ; Xiao-Ying LIU ; Wei-Dong YE ; Ya-Mei YUAN ; Xun-Yan YIN ; Xiang-Ming FANG
China Journal of Chinese Materia Medica 2023;48(23):6414-6422
This study investigated the therapeutic effect of Shegan Mahuang Decoction(SGMHD) on cold-induced asthma in rats and explored its underlying mechanism. Seventy-two healthy male SD rats of specific pathogen free(SPF) grade were randomly divided into a blank group, a model group, a positive control group(dexamethasone, 0.4 mg·kg~(-1)), and low-, medium-, and high-dose SGMHD groups(3.2, 6.4, and 12.8 g·kg~(-1)). The blank group received saline, while the other groups were sensitized by intraperitoneal injection of ovalbumin(OVA) solution. Subsequently, the rats were placed in a cold chamber adjustable to 0-2 ℃, and OVA solution was ultrasonically nebulized to induce cold-induced asthma in rats. After three weeks of treatment, the general behaviors of rats were observed. Hematoxylin-eosin(HE) staining was used to evaluate pathological changes in lung tissues, periodic acid-Schiff(PAS) staining assessed mucin changes, and Masson staining was performed to examine collagen deposition. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of the inflammatory factors interleukin-4(IL-4) and vascular endothelial growth factor(VEGF) in serum and bronchoalveolar lavage fluid(BALF). Real-time quantitative polymerase chain reaction(RT-PCR) was employed to assess the mRNA expression levels of transient receptor potential vanilloid subfamily member 1(TRPV1), nuclear respiratory factor 1(NRF-1), and mitochondrial transcription factor A(mtTFA) in lung tissues. Western blot was used to measure the protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues. Compared with the blank group, the model group exhibited signs of rapid respiration, increased frequency of defecation with looser stools, and disheveled and dull fur. Pathological results showed significant infiltration of inflammatory cells in lung tissues, narrowing of bronchial lumens, increased mucin secretion, and enhanced collagen deposition in the model group. Additionally, the levels of IL-4 and VEGF in serum and BALF were significantly elevated, and the mRNA and protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues were significantly increased. Compared with the model group, SGMHD improved the behaviors of rats, alleviated pathological changes in lung tissues, mucin production, and collagen deposition, significantly decreased the levels of IL-4 and VEGF in serum and BALF, and reduced the mRNA expression levels of TRPV1, NRF-1, and mtTFA in lung tissues, with the medium-dose SGMHD group showing the most significant effect. Moreover, the protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues were also reduced, with the medium-dose SGMHD group exhibiting the most significant effect. In conclusion, this study demonstrates that SGMHD can alleviate airway inflammation and inhibit airway remodeling in cold-induced asthma rats. These effects may be associated with the modulation of the TRPV1/NRF-1/mtTFA signaling pathway.
Rats
;
Male
;
Animals
;
Mice
;
Interleukin-4/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Rats, Sprague-Dawley
;
Asthma/genetics*
;
Lung
;
Bronchoalveolar Lavage Fluid
;
RNA, Messenger/metabolism*
;
Collagen/metabolism*
;
Mucins/therapeutic use*
;
Ovalbumin
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
TRPV Cation Channels/metabolism*
;
Drugs, Chinese Herbal
6.Preliminary study of TRPV4 affects chondrocyte degeneration.
Xue SHEN ; Hu ZHANG ; De-Ta CHEN ; Yue-Long CAO
China Journal of Orthopaedics and Traumatology 2023;36(10):990-995
OBJECTIVE:
To explore and verify that transient receptor potential vanilloid 4(TRPV4) affects chondrocyte degeneration.
METHODS:
Neonatal SD rats were selected, primary chondrocytes were extracted, and identified by toluidine blue staining and alcian blue staining;an in vitro chondrocyte inflammation model was constructed by IL-1β, and TRPV4 inhibitor was used to treat chondrocytes under inflammatory conditions, and the chondrocytes were treated by RT-PCR method was used to detect matrix metallopeptidase 13(MMP-13), a disintegrin and metalloproteinase with thrombospondin 5, (ADAMTS-5)、nitric oxide synthase 2(NOS2)、Collagen, type II alpha 1(Col2α1)and aggrecan (Acan) mRNA in chondrocytes; primary chondrocytes were treated with different concentrations of TRPV4 overexpression plasmid, and the optimal overexpression dose was screened. The mRNA expressions of TRPV4, MMP-13, ADAMTS-5, NOS2, Col2α1 and Acan in chondrocytes under the optimal TRPV4 overexpression dose were detected.
RESULTS:
Toluidine blue staining and Alcian blue staining identified the extracted cells as primary chondrocytes;RT-PCR showed that TRPV4, MMP-13, ADAMTS-5, NOS2 mRNA in chondrocytes treated with TRPV4 inhibitor under inflammatory conditions. The expression of Col2α1 mRNA was significantly decreased (P<0.05), and the expression of Col2α1 mRNA was increased (P<0.05). Although there was no significant difference in the expression of Acan mRNA, the overall trend was also increasing. The expression of Col2α1 and Acan mRNA in chondrocytes was significantly decreased (P<0.05), and the expression of NOS2 mRNA was increased(P<0.05), but there was no significant difference in MMP-13 and ADAMTS-5 (P>0.05).
CONCLUSION
Inhibiting the expression of TRPV4 can down-regulate the expression of genes related to chondrocyte degeneration.
Animals
;
Rats
;
Aggrecans/metabolism*
;
Cartilage, Articular
;
Cells, Cultured
;
Chondrocytes
;
Interleukin-1beta/metabolism*
;
Matrix Metalloproteinase 13/metabolism*
;
Rats, Sprague-Dawley
;
RNA, Messenger/metabolism*
;
TRPV Cation Channels/metabolism*
7.TRPV4-induced Neurofilament Injury Contributes to Memory Impairment after High Intensity and Low Frequency Noise Exposures.
Yang YANG ; Ju WANG ; Yu Lian QUAN ; Chuan Yan YANG ; Xue Zhu CHEN ; Xue Jiao LEI ; Liang TAN ; Hua FENG ; Fei LI ; Tu Nan CHEN
Biomedical and Environmental Sciences 2023;36(1):50-59
OBJECTIVE:
Exposure to high intensity, low frequency noise (HI-LFN) causes vibroacoustic disease (VAD), with memory deficit as a primary non-auditory symptomatic effect of VAD. However, the underlying mechanism of the memory deficit is unknown. This study aimed to characterize potential mechanisms involving morphological changes of neurons and nerve fibers in the hippocampus, after exposure to HI-LFN.
METHODS:
Adult wild-type and transient receptor potential vanilloid subtype 4 knockout (TRPV4-/-) mice were used for construction of the HI-LFN injury model. The new object recognition task and the Morris water maze test were used to measure the memory of these animals. Hemoxylin and eosin and immunofluorescence staining were used to examine morphological changes of the hippocampus after exposure to HI-LFN.
RESULTS:
The expression of TRPV4 was significantly upregulated in the hippocampus after HI-LFN exposure. Furthermore, memory deficits correlated with lower densities of neurons and neurofilament-positive nerve fibers in the cornu ammonis 1 (CA1) and dentate gyrus (DG) hippocampal areas in wild-type mice. However, TRPV4-/- mice showed better performance in memory tests and more integrated neurofilament-positive nerve fibers in the CA1 and DG areas after HI-LFN exposure.
CONCLUSION
TRPV4 up-regulation induced neurofilament positive nerve fiber injury in the hippocampus, which was a possible mechanism for memory impairment and cognitive decline resulting from HI-LFN exposure. Together, these results identified a promising therapeutic target for treating cognitive dysfunction in VAD patients.
Animals
;
Mice
;
TRPV Cation Channels/metabolism*
;
Intermediate Filaments/metabolism*
;
Hippocampus/metabolism*
;
Neurons/metabolism*
;
Memory Disorders/metabolism*
8.Oral administration of TRPV4 inhibitor improves atrial calcium handling abnormalities in sterile pericarditis rats.
Jie LIAO ; Shuai-Tao YANG ; Kai LU ; Yang LU ; Yu-Wei WU ; Yi-Mei DU
Acta Physiologica Sinica 2022;74(2):188-200
Atrial Ca2+ handling abnormalities, mainly involving the dysfunction of ryanodine receptor (RyR) and sarcoplasmic reticulum Ca2+-ATPase (SERCA), play a role in the pathogenesis of atrial fibrillation (AF). Previously, we found that the expression and function of transient receptor potential vanilloid subtype 4 (TRPV4) are upregulated in a sterile pericarditis (SP) rat model of AF, and oral administration of TRPV4 inhibitor GSK2193874 alleviates AF in this animal model. The aim of this study was to investigate whether oral administration of GSK2193874 could alleviate atrial Ca2+ handling abnormalities in SP rats. A SP rat model of AF was established by daubing sterile talcum powder on both atria of Sprague-Dawley (SD) rats after a pericardiotomy, to simulate the pathogenesis of postoperative atrial fibrillation (POAF). On the 3rd postoperative day, Ca2+ signals of atria were collected in isolated perfused hearts by optical mapping. Ca2+ transient duration (CaD), alternan, and the recovery properties of Ca2+ transient (CaT) were quantified and analyzed. GSK2193874 treatment reversed the abnormal prolongation of time to peak (determined mainly by RyR activity) and CaD (determined mainly by SERCA activity), as well as the regional heterogeneity of CaD in SP rats. Furthermore, GSK2193874 treatment relieved alternan in SP rats, and reduced its incidence of discordant alternan (DIS-ALT). More importantly, GSK2193874 treatment prevented the reduction of the S2/S1 CaT ratio (determined mainly by RyR refractoriness) in SP rats, and decreased its regional heterogeneity. Taken together, oral administration of TRPV4 inhibitor alleviates Ca2+ handling abnormalities in SP rats primarily by blocking the TRPV4-Ca2+-RyR pathway, and thus exerts therapeutic effect on POAF.
Administration, Oral
;
Animals
;
Atrial Fibrillation/etiology*
;
Calcium/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Pericarditis/pathology*
;
Rats
;
Rats, Sprague-Dawley
;
Ryanodine Receptor Calcium Release Channel/pharmacology*
;
Sarcoplasmic Reticulum/pathology*
;
TRPV Cation Channels
9.Baicalin treats cerebral ischemia reperfusion-induced brain edema in rats by inhibiting TRPV4 and AQP4 of astrocytes.
Xiao-Yu ZHENG ; Wen-Ting SONG ; Ye-Hao ZHANG ; Hui CAO ; Jian-Xun LIU
China Journal of Chinese Materia Medica 2022;47(4):1031-1038
This study aims to explore the pharmacodynamic effect of baicalin on rat brain edema induced by cerebral ischemia reperfusion injury and discuss the mechanism from the perspective of inhibiting astrocyte swelling, which is expected to serve as a refe-rence for the treatment of cerebral ischemia with Chinese medicine. To be specific, middle cerebral artery occlusion(suture method) was used to induce cerebral ischemia in rats. Rats were randomized into normal group, model group, high-dose baicalin(20 mg·kg~(-1)) group, and low-dose baicalin(10 mg·kg~(-1)) group. The neurobehavior, brain index, brain water content, and cerebral infarction area of rats were measured 6 h and 24 h after cerebral ischemia. Brain slices were stained with hematoxylin and eosin(HE) for the observation of pathological morphology of cerebral cortex after baicalin treatment. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the content of total L-glutathione(GSH) and glutamic acid(Glu) in brain tissue, Western blot to measure the content of glial fibrillary acidic protein(GFAP), aquaporin-4(AQP4), and transient receptor potential vanilloid type 4(TRPV4), and immunohistochemical staining to observe the expression of GFAP. The low-dose baicalin was used for exploring the mechanism. The experimental results showed that the neurobehavioral scores(6 h and 24 h of cerebral ischemia), brain water content, and cerebral infarction area of the model group were increased, and both high-dose and low-dose baicalin can lower the above three indexes. The content of GSH dropped but the content of Glu raised in brain tissue of rats in the model group. Low-dose baicalin can elevate the content of GSH and lower the content of Glu. According to the immunohistochemical staining result, the model group demonstrated the increase in GFAP expression, and swelling and proliferation of astrocytes, and the low-dose baicalin can significantly improve this situation. The results of Western blot showed that the expression of GFAP, TRPV4, and AQP4 in the cerebral cortex of the model group increased, and the low-dose baicalin reduce their expression. The cerebral cortex of rats in the model group was severely damaged, and the low-dose baicalin can significantly alleviate the damage. The above results indicate that baicalin can effectively relieve the brain edema caused by cerebral ischemia reperfusion injury in rats, possibly by suppressing astrocyte swelling and TRPV4 and AQP4.
Animals
;
Aquaporin 4/genetics*
;
Astrocytes
;
Brain Edema/drug therapy*
;
Brain Ischemia/metabolism*
;
Flavonoids
;
Infarction, Middle Cerebral Artery/drug therapy*
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion
;
TRPV Cation Channels/therapeutic use*
10.Effect of electroacupuncture on the expressions of TRPV1, P2X3 receptors in bladder of rats with interstitial cystitis.
Zhi-Hao LI ; Xue-Dan ZHAO ; Wen LI ; Wen-Jun HAN
Chinese Acupuncture & Moxibustion 2022;42(11):1263-1268
OBJECTIVE:
To observe the effect of electroacupuncture (EA) at "Ciliao" (BL 32) and "Huiyang" (BL 35) on the pain, urodynamic and the expressions of transient receptor poteintial vanilloid 1 (TRPV1) and P2X3 receptors in bladder of rats with interstitial bladder (IC), and to explore the possible mechanism on EA for IC.
METHODS:
A total of 24 Wistar female rats were randomly divided into a blank group, a model group and an EA group, 8 rats in each group. In the model group and the EA group, IC model was established by intraperitoneal injection of cyclophosphamide by 150 mg/kg at once. EA was applied at "Ciliao" (BL 32) and "Huiyang" (BL 35) in the EA group for 20 min, with continuous wave, 30 Hz in frequency, once a day for 3 consecutive days. Mechanical pain threshold of bladder and urodynamic indexes (first urination time, bladder effective volume and urination pressure) were observed after model establishment and after intervention, the expressions of TRPV1 and P2X3 receptors in the bladder were detected by Western blot.
RESULTS:
After model establishment, the mechanical pain threshold of bladder was decreased in the model group and the EA group compared with that in the blank group (P<0.01). After intervention, the mechanical pain threshold of bladder in the model group was lower than the blank group (P<0.01), and that in the EA group was higher than the model group (P<0.01). The urodynamic of the rats in the blank group was normal, obvious abnormal contraction during the filling period of bladder was found in the rats of the model group, while no abnormal contraction during the filling period was found in the rats of the EA group. After model establishment, in the model group and the EA group, the first urination time was earlier than the blank group (P<0.01), while bladder effective volume and urination pressure were lower than the blank group (P<0.01). After intervention, in the model group, the first urination time was earlier than the blank group (P<0.01), while bladder effective volume and urination pressure were lower than the blank group (P<0.05); in the EA group, the first urination time was later than the model group (P<0.05), while bladder effective volume and urination pressure were higher than the model group (P<0.05). Compared with the blank group, the protein expressions of TRPV1 and P2X3 receptors in bladder were up-regulated in the model group (P<0.01); compared with the model group, the protein expressions of TRPV1 and P2X3 receptors in bladder were down-regulated in the EA group (P<0.05).
CONCLUSION
EA can relieve bladder pain and improve urodynamic in IC rats. The mechanism may be related to the down-regulation on the expressions of TRPV1 and P2X3 receptors and the further inhibition on the abnormal input of bladder signal.
Rats
;
Female
;
Animals
;
Cystitis, Interstitial/therapy*
;
Electroacupuncture
;
Urinary Bladder
;
Receptors, Purinergic P2X3/metabolism*
;
Rats, Sprague-Dawley
;
Rats, Wistar
;
Pain
;
Antineoplastic Agents
;
TRPV Cation Channels/metabolism*

Result Analysis
Print
Save
E-mail