1.miR-373 inhibits M2 polarization of tumor associated macrophages and affects rectal cancer cells by regulating JAK2/STAT6 signal pathway.
Zhi LI ; Di WU ; Xingming XIE ; Fei TIAN ; Jie LIU
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):211-220
Objective To explore the effects of miR-373 and Janus kinase 2/signal transducer and activator of transcription 6 (JAK2/STAT6) signaling pathways on the M2 polarization of tumor associated macrophages (TAM) in rectal cancer. Methods THP-1 cells were induced into M0/M1/M2 macrophages, M0 macrophages were cocultured with Caco-2 cells to obtain TAM, Flow cytometry was used to detect the expression of CD86 and CD206, Real-time quantitative qPCR and Western blot were used to detect miR-373, inducible nitric oxide synthase (iNOS), toll-like receptor 4 (TLR-4), interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), arginase 1 (Arg1), chitinase 3-like 1 (Ym1), resistin like α (Fizz1), IL-10 mRNA and protein levels. TAM were transfected and divided into overexpressing miR-373 group (miR-373-TAM) and control group (miR-NC-TAM), overexpressing miR-373+JAK2-TAM group (miR-373 combined with JAK2-TAM) and control group (miR-373 combined with NC-TAM), and then cocultured with Caco-2 cells. Flow cytometry was used to detect the expression of CD206 in TAM; Real-time quantitative PCR and Western blot were used to detect miR-373, Arg1, Ym1, Fizz1, IL-10, JAK2, STAT6 mRNA and protein levels in TAM; CCK-8 assay, colony formation assay, and Transwell assay were used to detect the proliferation, migration, and invasion ability of Caco-2 cells. Thirty nude mice were randomly divided into Caco-2 cells group, Caco-2 cells combined with miR-NC-TAM group, and Caco-2 cells combined with miR-373-TAM group, with 10 mice in each group. Rats in each group were subcutaneously injected with pure Caco-2 cells, Caco-2 cells combined with TAM, and Caco-2 cells combined with TAM overexpressing miR-373. After 4 weeks of cell inoculation, immunofluorescence staining was used to detect F4/80+CD206+cells level in tumor tissue; Real-time quantitative PCR and Western blot were used to detect miR-373, JAK2, STAT6, Arg1, Ym1, Fizz1, IL-10 mRNA and protein levels in tumor tissues. Results TAM tended to M2 polarization. After overexpression of miR-373, miR-373 level in TAM was increased, while Arg1, Ym1, Fizz1, IL-10, JAK2, STAT6 mRNA and protein levels were decreased, proliferation, migration, invasion ability of Caco-2 cells were decreased; Overexpression of JAK2 could partially reverse the effect of overexpression of miR-373 on the M2 polarization of TAM and proliferation, migration, invasion ability of Caco-2 cells. TAM could promote tumor growth; Overexpression of miR-373 could inhibit tumor growth and inhibit M2 polarization of TAM. Conclusion miR-373 could inhibit M2 polarization of TAM in rectal cancer, and miR-373 might inhibit proliferation and metastasis of rectal cancer cells by regulating the JAK2/STAT6 pathway.
MicroRNAs/metabolism*
;
Humans
;
STAT6 Transcription Factor/genetics*
;
Signal Transduction/genetics*
;
Animals
;
Janus Kinase 2/genetics*
;
Mice
;
Tumor-Associated Macrophages/metabolism*
;
Rectal Neoplasms/pathology*
;
Caco-2 Cells
;
Mice, Nude
;
THP-1 Cells
;
Mice, Inbred BALB C
;
Cell Polarity
;
Male
2.miR-582-5p regulates DUSP1 to modulate Mycobacterium tuberculosis infection in macrophages.
Yanming SUN ; Fengxia LIU ; Tingting CHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):406-412
Objective To explore the effect of miR-582-5p on Mycobacterium tuberculosis (Mtb)-infected macrophages by regulating dual specificity phosphatase 1 (DUSP1). Methods THP-1 macrophages were divided into six groups: control group, Mtb group, inhibitor-NC group, miR-582-5p inhibitor group, miR-582-5p inhibitor+si-NC group, and miR-582-5p inhibitor+si-DUSP1 group. QRT-PCR was applied to detect the gene expression of miR-582-5p and DUSP1 in cells. ELISA kit was used to detect the levels of interferon γ (IFN-γ), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and interleukin 1β (IL-1β). CCK-8 method was applied to detect cell proliferation. Flow cytometry was applied to detect cell apoptosis rate. Western blot analysis was used to measure the protein expression levels of B-cell lymphoma 2 (Bcl2), Bcl2-associated X (BAX), and cleaved-caspase 3 (c-caspase-3) in cells. In addition, the target relationship between miR-582-5p and DUSP1 was verified. Results Compared with the control group, the expression of miR-582-5p, levels of IFN-γ, IL-6, TNF-α, IL-1β, bacterial load and OD450 values (24 h, 48 h), and the protein expression of Bcl2 in macrophages were higher in the Mtb group, while the mRNA expression of DUSP1, apoptosis rate, and the protein expression levels of c-caspase-3, BAX and DUSP1 were lower. Compared with the Mtb group and the inhibitor-NC group, the above-mentioned indicators in the miR-582-5p inhibitor group were partially reversed. Down-regulation of DUSP1 expression partially reversed the inhibitory effect of down-regulation of miR-582-5p expression on Mtb-infected macrophages. Conclusion Inhibiting the expression of miR-582-5p can up-regulate DUSP1, thereby inhibiting the proliferation and inflammatory response of Mtb-infected macrophages and promoting cell apoptosis.
Humans
;
Macrophages/metabolism*
;
Dual Specificity Phosphatase 1/metabolism*
;
MicroRNAs/metabolism*
;
Mycobacterium tuberculosis/physiology*
;
Tuberculosis/microbiology*
;
Apoptosis/genetics*
;
THP-1 Cells
;
Cell Proliferation/genetics*
;
Interferon-gamma/genetics*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
3.HAPLN1 secreted by synovial fibroblasts in rheumatoid arthritis promotes macrophage polarization towards the M1 phenotype.
Chenggen LUO ; Kun HUANG ; Xiaoli PAN ; Yong CHEN ; Yanjuan CHEN ; Yunting CHEN ; Mang HE ; Mei TIAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):413-419
Objective To investigate the effects of hyaluronic acid and proteoglycan-linked protein 1 (HAPLN1) secreted by synovial fibroblasts (FLS) on the polarization of macrophages (Mϕ) in rheumatoid arthritis (RA). Methods Human monocytic leukemia cells (THP-1) were differentiated into Mϕ, which were subsequently exposed to recombinant HAPLN1 (rHAPLN1). RA-FLS were transfected separately with HAPLN1 overexpression plasmid (HAPLN1OE) or small interfering RNA targeting HAPLN1 (si-HAPLN1), and then co-cultured with Mϕ to establish a co-culture model. The viability of Mϕ was assessed using the CCK-8 assay, and the proportions of pro-inflammatory M1-type and anti-inflammatory M2-type Mϕ were analyzed by flow cytometry. Additionally, the expression levels of inflammatory markers, including interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), and inducible nitric oxide synthase (iNOS), were quantified using quantitative real-time PCR and Western blot analysis. Results The viability of Mϕ was increased in the rHAPLN1 group compared to the control group. Furthermore, both the M1/Mϕ ratio and inflammatory factor levels were elevated in the rHAPLN1 and HAPLN1OE groups. In contrast, the si-HAPLN1 group exhibited a decrease in the M1/Mϕ ratio and inflammatory factor expression. Notably, the introduction of rHAPLN1 in rescue experiments further promoted Mϕ polarization towards the M1 phenotype. Conclusion HAPLN1, secreted by RA fibroblast-like synoviocytes (RA-FLS), enhances Mϕ polarization towards the M1 phenotype.
Humans
;
Arthritis, Rheumatoid/genetics*
;
Macrophages/immunology*
;
Fibroblasts/metabolism*
;
Phenotype
;
Extracellular Matrix Proteins/genetics*
;
Proteoglycans/genetics*
;
Synovial Membrane/cytology*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
;
Nitric Oxide Synthase Type II/genetics*
;
Cell Differentiation
;
Coculture Techniques
;
THP-1 Cells
4.Molecular Mechanism of Thymoquinone Inhibition on Malignant Proliferation of Acute Myeloid Leukemia Cells.
Jie LIN ; Fan-Lin ZENG ; Yan-Quan LIU ; Zhi-Min YAN ; Zuo-Tao LI ; Qing-Lin XU ; Hong-Quan ZHU
Journal of Experimental Hematology 2025;33(2):311-318
OBJECTIVE:
To investigate the effects of thymoquinone on the proliferation of acute myeloid leukemia (AML) cells and its molecular mechanism, so as to provide theoretical basis for the basic research on the anti-leukemia of traditional Chinese medicine.
METHODS:
The HL-60 and THP-1 cells were treated with thymoquinone at different concentration gradients, cell proliferation was detected by CCK-8 method, morphological changes were detected by Wright-Giemsa method, apoptosis was detected by Annexin V/PI double staining flow cytometry, and apoptosis and signal pathway protein expression were detected by Western blot. Real-time quantitative fluorescence PCR and Western blot were used to detect the expression changes of high mobility family members of SRY-related proteins (SOX).
RESULTS:
Thymoquinone inhibited the malignant proliferation of HL-60 and THP-1 cells, up-regulated the expression of pro-apoptotic protein Bax, down-regulated the expression of anti-apoptotic protein Bcl-2 and Survivin, and hydrolyzed Caspase-3 to induce the apoptosis of HL-60 and THP-1 cells. Thymoquinone could also significantly down-regulate the phosphorylation of PI3K, Akt and mTOR, and inhibit the malignant biological characteristics of HL-60 and THP-1 cells by inhibiting the activation of PI3K/Akt/mTOR pathway. After thymoquinone intervention in HL-60 and THP-1 cells, the expression of SOX2 and SOX4 could be down-regulated significantly. At low concentration ( < 10 μmol/L), the expression of SOX12 was weakly affected by thymoquinone. With increasing concentration, the expression of SOX12 could be down-regulated, however, thymoquinone had no effect on SOX11 expression.
CONCLUSION
Thymoquinone can inhibit the proliferation of AML cells, and its mechanism may be related to inhibiting the activation of PI3K/Akt/mTOR signaling pathway, regulating the expression of apoptotic proteins and core members of SOX family.
Humans
;
Benzoquinones/pharmacology*
;
Cell Proliferation/drug effects*
;
Leukemia, Myeloid, Acute/metabolism*
;
Apoptosis/drug effects*
;
HL-60 Cells
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Cell Line, Tumor
;
Phosphatidylinositol 3-Kinases/metabolism*
;
THP-1 Cells
5.The Molecular Mechanism of HCQ Reversing Immune Mediators Dysregulation in Severe Infection after Chemotherapy in Acute Myeloid Leukemia and Inducing Programmed Death of Leukemia Cells.
Qing-Lin XU ; Yan-Quan LIU ; He-Hui ZHANG ; Fen WANG ; Zuo-Tao LI ; Zhi-Min YAN ; Shu-Juan CHEN ; Hong-Quan ZHU
Journal of Experimental Hematology 2025;33(4):931-938
OBJECTIVE:
To explore the effects of hydroxychloroquine (HCQ) on immune mediators dysregulation in severe infection after chemotherapy in acute myeloid leukemia (AML) and its molecular mechanism.
METHODS:
Bone marrow or peripheral blood samples of 36 AML patients with severe infection (AML-SI) and 29 AML patients without infection (AML-NI) after chemotherapy were collected from the First Affiliated Hospital of Gannan Medical University from August 2022 to June 2023. In addition, the peripheral blood of 21 healthy subjects from the same period in our hospital was selected as the control group. The mRNA expressions of CXCL12, CXCR4 and CXCR7 were detected by RT-qPCR technology, and the levels of IL-6, IL-8 and TNF-α were detected by ELISA. Leukemia-derived THP-1 cells were selected and constructed as AML disease model. At the same time, bone marrow mesenchymal stem cells (BM-MSCs) from AML-SI patients were co-cultured with THP-1 cells and divided into Mono group and Co-culture group. THP-1 cells were treated with different concentration gradients of HCQ. The cell proliferation activity was subsequently detected by CCK-8 method and apoptosis was detected by Annexin V/PI double staining flow cytometry. ELISA was used to detect the changes of IL-6, IL-8 and TNF-α levels in the supernatant of the cell co-culture system, RT-qPCR was used to detect the mRNA expression changes of the core members of the CXCL12-CXCR4/7 regulatory axis, and Western blot was used to detect the expressions of apoptosis regulatory molecules and related signaling pathway proteins.
RESULTS:
CXCL12, CXCR4, CXCR7, as well as IL-6, IL-8, and TNF-α were all abnormally increased in AML patients, and the increases were more significant in AML-SI patients (P <0.01). Furthermore, there were statistically significant differences between AML-NI patients and AML-SI patients (all P <0.05). HCQ could inhibit the proliferation and induce the apoptosis of THP-1 cells, but the low concentration of HCQ had no significant effect on the killing of THP-1 cells. When THP-1 cells were co-cultured with BM-MSCs of AML patients, the levels of IL-6, IL-8 and TNF-α in the supernatance of Co-culture group were significantly higher than those of Mono group (all P <0.01). After HCQ intervention, the levels of IL-6, IL-8 and TNF-α in cell culture supernatant of Mono group were significantly decreased compared with those before intervention (all P <0.01). Similarly, those of Co-culture group were also significantly decreased (all P <0.001). However, the expression of the core members of the CXCL12-CXCR4/7 regulatory axis was weakly affected by HCQ. HCQ could up-regulate the expression of pro-apoptotic protein Bax, down-regulate the expression of anti-apoptotic protein Bcl-2, as well as simultaneously promote the hydrolytic activation of Caspase-3 when inhibiting the activation level of TLR4/NF-κB pathway, then induce the programmed death of THP-1 cells after intervention.
CONCLUSION
The core members of CXCL12-CXCR4/7 axis and related cytokines may be important mediators of severe infectious immune disorders in AML patients. HCQ can inhibit cytokine levels to reverse immune mediators dysregulation and suppress malignant biological characteristics of leukemia cells. The mechanisms may be related to regulating the expression of Bcl-2 family proteins, hydrolytically activating Caspase-3 and inhibiting the activation of TLR4/NF-κB signaling pathway.
Humans
;
Leukemia, Myeloid, Acute/immunology*
;
Hydroxychloroquine/pharmacology*
;
Receptors, CXCR4/metabolism*
;
Apoptosis/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Chemokine CXCL12/metabolism*
;
Interleukin-8/metabolism*
;
Interleukin-6/metabolism*
;
Receptors, CXCR/metabolism*
;
Mesenchymal Stem Cells
;
THP-1 Cells
6.Rutaecarpine Attenuates Monosodium Urate Crystal-Induced Gouty Inflammation via Inhibition of TNFR-MAPK/NF-κB and NLRP3 Inflammasome Signaling Pathways.
Min LI ; Zhu-Jun YIN ; Li LI ; Yun-Yun QUAN ; Ting WANG ; Xin ZHU ; Rui-Rong TAN ; Jin ZENG ; Hua HUA ; Qin-Xuan WU ; Jun-Ning ZHAO
Chinese journal of integrative medicine 2025;31(7):590-599
OBJECTIVE:
To investigate the anti-inflammatory effect of rutaecarpine (RUT) on monosodium urate crystal (MSU)-induced murine peritonitis in mice and further explored the underlying mechanism of RUT in lipopolysaccharide (LPS)/MSU-induced gout model in vitro.
METHODS:
In MSU-induced mice, 36 male C57BL/6 mice were randomly divided into 6 groups of 8 mice each group, including the control group, model group, RUT low-, medium-, and high-doses groups, and prednisone acetate group. The mice in each group were orally administered the corresponding drugs or vehicle once a day for 7 consecutive days. The gout inflammation model was established by intraperitoneal injection of MSU to evaluate the anti-gout inflammatory effects of RUT. Then the proinflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA) and the proportions of infiltrating neutrophils cytokines were detected by flow cytometry. In LPS/MSU-treated or untreated THP-1 macrophages, cell viability was observed by cell counting kit 8 and proinflammatory cytokines were measured by ELISA. The percentage of pyroptotic cells were detected by flow cytometry. Respectively, the mRNA and protein levels were measured by real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot, the nuclear translocation of nuclear factor κB (NF-κB) p65 was observed by laser confocal imaging. Additionally, surface plasmon resonance (SPR) and molecular docking were applied to validate the binding ability of RUT components to tumor necrosis factor α (TNF-α) targets.
RESULTS:
RUT reduced the levels of infiltrating neutrophils and monocytes and decreased the levels of the proinflammatory cytokines interleukin 1β (IL-1β) and interleukin 6 (IL-6, all P<0.01). In vitro, RUT reduced the production of IL-1β, IL-6 and TNF-α. In addition, RT-PCR revealed the inhibitory effects of RUT on the mRNA levels of IL-1β, IL-6, cyclooxygenase-2 and TNF-α (P<0.05 or P<0.01). Mechanistically, RUT markedly reduced protein expressions of tumor necrosis factor receptor (TNFR), phospho-mitogen-activated protein kinase (p-MAPK), phospho-extracellular signal-regulated kinase, phospho-c-Jun N-terminal kinase, phospho-NF-κB, phospho-kinase α/β, NOD-like receptor thermal protein domain associated protein 3 (NLRPS), cleaved-cysteinyl aspartate specific proteinase-1 and cleaved-gasdermin D in macrophages (P<0.05 or P<0.01). Molecularly, SPR revealed that RUT bound to TNF-α with a calculated equilibrium dissociation constant of 31.7 µmol/L. Molecular docking further confirmed that RUT could interact directly with the TNF-α protein via hydrogen bonding, van der Waals interactions, and carbon-hydrogen bonding.
CONCLUSION
RUT alleviated MSU-induced peritonitis and inhibited the TNFR1-MAPK/NF-κB and NLRP3 inflammasome signaling pathway to attenuate gouty inflammation induced by LPS/MSU in THP-1 macrophages, suggesting that RUT could be a potential therapeutic candidate for gout.
Animals
;
NF-kappa B/metabolism*
;
Male
;
Indole Alkaloids/therapeutic use*
;
Signal Transduction/drug effects*
;
Mice, Inbred C57BL
;
Inflammation/complications*
;
Uric Acid
;
Quinazolines/therapeutic use*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Humans
;
Gout/chemically induced*
;
Inflammasomes/metabolism*
;
Cytokines/metabolism*
;
THP-1 Cells
;
Mitogen-Activated Protein Kinases/metabolism*
;
Mice
;
Molecular Docking Simulation
;
Lipopolysaccharides
;
Quinazolinones
7.Polarizing macrophages derived from human THP-1 cells in vitro: methods and protocols.
Pengfei LI ; Lin CHEN ; Wei YUAN ; Xingqiang LI ; Xuesong FENG
Journal of Zhejiang University. Science. B 2025;26(11):1132-1136
Macrophages derived from the human THP-1 cell line have been widely used as substitutes for primary macrophages in various macrophage-related studies. However, difficulties still exist in establishing THP-1 macrophage models. This research presents techniques for generating different phenotypes of activated macrophages derived from THP-1 cells by introducing specific stimuli and provides some potential markers to confirm each type of activated macrophage. It is hoped to provide novel and useful methods for scientific research and to help researchers explore this field more intuitively and effectively.
Humans
;
Macrophages/physiology*
;
THP-1 Cells
;
Cell Culture Techniques/methods*
;
Macrophage Activation
;
Cell Polarity
;
Cell Differentiation
;
Phenotype
;
Cell Line
8.Bioinformatics, expression, purification, and inflammation-inducing effect of Mycoplasma genitalium GroEL protein.
Li CHEN ; Xiaoling SU ; Haodang LUO ; Jingyun WANG ; Daoyong LIAO ; Tian GAN ; Jianwei YU ; Jun HE
Chinese Journal of Biotechnology 2024;40(11):4084-4097
To preliminarily understand the pathogenic mechanism of Mycoplasma genitalium (Mg) GroEL protein, we used bioinformatics tools to predict the structure and function of Mg GroEL protein and then constructed the recombinant plasmid pET-28a-GroEL. The protein expression was induced by 0.2 mmol/L IPTG, and the expressed protein was purified by Ni-iminodicitic acid (IDA) column affinity. Tohoku Hospital Pediatrics-1 (THP-1) cells were exposed to 2 μg/mL Mg rGroEL. The levels of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in the cell supernatant were measured by ELISA, and that of IL-6 was measured by an automatic chemiluminescence instrument. The activation of the nuclear factor-kappa B (NF-κB) signaling pathway was visualized by immunofluorescence and Western blotting. The results showed that Mg GroEL was a stable hydrophilic protein composed of 543 amino acid residues, with the relative molecular mass of 58.44 kDa, an isoelectric point of 5.68, and a molecular formula of C2568H4300N700O825S8. The secondary structure was mainly composed of α-helices and random coils. Mg GroEL contained 12 B-cell dominant epitopes and 10 T-cell dominant epitopes. It exhibited high homology with the GroEL proteins from Mycoplasma pneumoniae, M. agalactiae, M. arthritidis, M. hyopneumoniae, and M. bovis. Mg rGroEL activated the NF-κB signaling pathway and promoted the secretion of IL-1β, IL-6, and TNF-α in THP-1 cells. These results suggest that Mg GroEL exhibits substantial antigenicity and possesses the capability of triggering inflammation in host cells. This study establishes a theoretical basis for future investigations pertaining to the role and pathogenic mechanisms of Mg GroEL.
Mycoplasma genitalium/metabolism*
;
Chaperonin 60/metabolism*
;
Computational Biology
;
Bacterial Proteins/genetics*
;
Humans
;
NF-kappa B/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-1beta/genetics*
;
Inflammation
;
Interleukin-6/genetics*
;
Recombinant Proteins/genetics*
;
THP-1 Cells
;
Signal Transduction
;
Escherichia coli/metabolism*
9.Effects and mechanism of knocking down lncRNA H19 to inhibit lipid accumulation in human THP-1 cells-derived macrophages.
Xuemei WANG ; Yue CHE ; Jieying WANG ; Ke MEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(10):884-890
Objective To investigate the effects of long noncoding RNA H19 on lipid accumulation of macrophages under high fat stress and its mechanism. Methods Human THP-1 cells-derived macrophages were incubated with ox-LDL, and the effects of H19 siRNA intervention on lipid accumulation was observed. The THP-1 cells were divided into control group (conventional culture), ox-LDL group, siRNA negative control (NC siRNA) combined with ox-LDL treatment group, and H19 siRNA combined with ox-LDL treatment group. Oil red O staining was used to determine the lipid accumulation in cells, and cholesterol concentration was analyzed by enzymatic method; ATP assay kit for detecting celluar ATP content; colorimetry was used to detect the levels of oxidative stress indicators and ELISA was used to detect the levels of monocyte chemoattractant protein-1 (MCP-1) in the cell supernatant. Western blot analysis was used to detect the protein expression of ATP binding cassette transporter A1 (ABCA1), peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and nuclear factor κB p-p65 (NF-κB p-p65). Results Knockdown H19 significantly inhibited intracellular lipid accumulation, decreased total cholesterol (TC) and cholesterol ester (CE) content, and decreased CE/TC ratio. Knockdown H19 significantly alleviated cell damage including an increase in ATP content, a decrease in oxidative stress levels and a decrease in MCP-1 levels, which caused by high-fat stress. H19 siRNA upregulated expression of ABCA1, PPARα and PGC-1α in THP-1 derived macrophages, downregulated NF-κB signal pathway. Conclusion Knockdown H19 upregulates PGC-1α expression in THP-1 cells and downregulates NF-κB pathway, which promotes cholesterol reverse transport, reduces inflammatory reaction and inhibits lipid accumulation.
Humans
;
Adenosine Triphosphate
;
Cholesterol
;
NF-kappa B
;
PPAR alpha
;
RNA, Long Noncoding/genetics*
;
RNA, Small Interfering/genetics*
;
THP-1 Cells
;
Macrophages/metabolism*
;
Lipid Metabolism
10.Effect of polydatin on the proliferation and apoptosis of THP-1 cells and the mechanism.
Chun-Mei WANG ; Wen-Jing QI ; Yan-Jiao REN ; Guang-Yao SHENG
Chinese Journal of Contemporary Pediatrics 2022;24(7):821-825
OBJECTIVES:
To explore the effect of polydatin on the proliferation and apoptosis of acute monocytic leukemia cell line THP-1 and the possible mechanism.
METHODS:
After THP-1 cells were treated with polydatin at gradient concentrations for 24 hours and 48 hours, their proliferation was determined by CCK-8 assay, and half maximal inhibitory concentration (IC50) was calculated. Logarithmically growing THP-1 cells were divided into two groups, a polydatin treatment group (treated with IC50 of polydatin) and a blank control group (treated without polydatin solution), and incubated for 48 hours. Cell apoptosis and cell cycle were measured by flow cytometry. The expression levels of PI3K, AKT, p-AKT, mTOR, p-mTOR, p70 S6K, and p-p70 S6K proteins were measured by Western blotting.
RESULTS:
After treatment with polydatin, the proliferation of THP-1 cells was strongly inhibited, and the IC50 at 48 hours was 1 800 μmol/L. After treatment with 1 800 μmol/L polydatin solution for 48 hours, the apoptosis rate of THP-1 cells increased significantly compared with the blank control group (P<0.05). The cell cycle was arrested in the G0/G1 and S phases, with a significantly increased proportion of cells in the G0/G1 phase and a significantly decreased proportion of cells in the S phase, as compared with the blank control group (P<0.05). The expression levels of PI3K, AKT, p-AKT, mTOR, p-mTOR, p70 S6K, and p-p70 S6K proteins decreased significantly compared with the blank control group (P<0.05).
CONCLUSIONS
Polydatin can effectively inhibit the proliferation, block the cell cycle, and induce the apoptosis of THP-1 cells, which may be related to inhibition of the PI3K/AKT/mTOR signaling pathway.
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Glucosides/pharmacology*
;
Humans
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt
;
Signal Transduction
;
Stilbenes/pharmacology*
;
THP-1 Cells
;
TOR Serine-Threonine Kinases

Result Analysis
Print
Save
E-mail