1.High mobility group protein B1(HMGB1) promotes myeloid dendritic cell maturation and increases Th17 cell/Treg cell ratio in patients with immune primary thrombocytopenia.
Qinzhi LI ; Dongsheng DUAN ; Xiujuan WANG ; Mingling SUN ; Ying LIU ; Xinyou WANG ; Lei WANG ; Wenxia FAN ; Mengting SONG ; Xinhong GUO
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):45-50
Objective This study investigated the regulatory effect of high mobility group protein B1 (HMGB1) in the peripheral blood of patients with primary immune thrombocytopenia (ITP) on myeloid dendritic cells (mDC) and Th17/regulatory T cells (Treg) balance. Methods The study enrolled 30 newly diagnosed ITP patients and 30 healthy controls.Flow cytometry was used to measure the proportion of mDC, Th17, and Treg cells in the peripheral blood of ITP patients and healthy controls. ELISA was conducted to quantify the serum levels of HMGB1, interleukin 6 (IL-6), IL-23, IL-17, and transforming growth factor β(TGF-β). The mRNA levels of retinoic acid-related orphan receptor γt(RORγt) and forehead box P3(FOXP3) were detected by real-time PCR. The correlation between the abovementioned cells, cytokines, and platelet count was assessed using Pearson linear correlation analysis. Results The proportion of Th17 cells and the expression levels of HMGB1, IL-6, IL-23, IL-17 and the level of RORγt mRNA in the peripheral blood of ITP patients were higher than those in healthy controls. However, the Treg cell proportion and TGF-β level were lower in ITP patients than those in healthy controls. In patients with ITP, the proportion of mDC and the level of FOXP3 mRNA did not show significant changes. The proportion of mDC cells was significantly correlated with the expression of IL-6 and IL-23. Moreover, the expression of HMGB1 showed a significant correlation with the expression of mDC, IL-6, IL-23, RORγt mRNA, and IL-17. Notably, both the proportion of mDC cells and the expression of HMGB1 were negatively correlated with platelet count. Conclusion The high expression of HMGB1 in peripheral blood of ITP patients may induce Th17/Treg imbalance by promoting the maturation of mDC and affecting the secretion of cytokines, thereby potentially playing a role in the immunological mechanism of ITP.
Humans
;
Th17 Cells/cytology*
;
HMGB1 Protein/genetics*
;
T-Lymphocytes, Regulatory/cytology*
;
Female
;
Male
;
Dendritic Cells/metabolism*
;
Adult
;
Middle Aged
;
Purpura, Thrombocytopenic, Idiopathic/genetics*
;
Nuclear Receptor Subfamily 1, Group F, Member 3/genetics*
;
Young Adult
;
Interleukin-23/blood*
;
Interleukin-17/blood*
;
Interleukin-6/blood*
;
Forkhead Transcription Factors/genetics*
;
Myeloid Cells/cytology*
;
Aged
2.RNA Sequencing Reveals Molecular Alternations of Splenocytes Associated with Anti-FⅧ Immune Response in Hemophilia A Murine Model.
Chen-Chen WANG ; Ya-Li WANG ; Yuan-Hua CAI ; Qiao-Yun ZHENG ; Zhen-Xing LIN ; Ying-Yu CHEN
Journal of Experimental Hematology 2025;33(5):1476-1485
OBJECTIVE:
To investigate the molecular alterations of splenocytes associated with anti-factor Ⅷ (FⅧ) immune response and the underlying mechanisms based on hemophilia A (HA) murine model via RNA sequencing (RNA-seq) technology.
METHODS:
Severe HA mice were immunized with recombinant human factor Ⅷ (rhF8) weekly for 4 weeks to establish an FⅧ inhibitor model. High quality raw data were obtained by using bulk RNA-seq and CASAVA base identification technology, and the differentially expressed genes (DEGs) were identified. The DEGs were statistically classified by gene ontology (GO) annotation to obtain information on the major signaling pathways and biological processes involved in anti-FⅧ immune response in HA mouse splenocytes. The cell clusters, genes, and signaling pathway datasets were comprehensively analyzed by GO, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and single cell RNA-seq (ScRNA-seq) analysis, respectively. Flow cytometry analysis was used to verify the changes in T follicular helper cells (Tfh) and regulatory T cells (Treg).
RESULTS:
A total of 3731 DEGs was identified, including 2275 genes with up-regulated expression and 1456 genes with down-regulated expression. The DEGs were enriched in helper T cell differentiation, cytokine receptor, T cell receptor signaling pathway, ferroptosis, etc. Uniform Manifold Approximation and Project (UMAP) downscaling and visualization analysis yielded a total number of 11 T/NK cell subsets, visualizing the overall expression distribution of C-X-C chemokine-specific receptor gene cxcr5 among these T/NK cell subsets. Higher expression of cxcr5 was found in activated Tfh from FⅧ inhibitor mice, in comparison to the control group. The visualization using Upset plot R language showed a close interaction between Tfh and Treg. Moreover, the increased frequencies of Tfh and the decreased frequencies of Treg in inhibitor mouse splenocytes were further verified by flow cytometry analysis.
CONCLUSION
Multiple immune cell subsets, signaling pathways, and characteristic genes may be involved in the process of anti-FⅧ immune response in HA mouse splenocytes. The molecules involved in the regulation of Tfh/Treg may play key roles, which provide potential biological targets and therapeutic strategies for HA patients with inhibitors in the future.
Animals
;
Hemophilia A/genetics*
;
Mice
;
Sequence Analysis, RNA
;
Disease Models, Animal
;
Spleen/cytology*
;
T-Lymphocytes, Regulatory/immunology*
;
Humans
;
Signal Transduction
;
Factor VIII/immunology*
;
T-Lymphocytes, Helper-Inducer/immunology*
3.OX40 ligand promotes follicular helper T cell differentiation and development in mice with immune thrombocytopenia.
Ziyin YANG ; Lei HAI ; Xiaoyu CHEN ; Siwen WU ; Yan LV ; Dawei CUI ; Jue XIE
Journal of Zhejiang University. Science. B 2025;26(3):240-253
Immune thrombocytopenia (ITP) is a hemorrhagic autoimmune disease characterized by antibody-mediated platelet injury. ITP has complicated immunopathological mechanisms that need further elucidation. It is well known that the costimulatory molecules OX40 ligand (OX40L) and OX40 play essential roles in the immunological mechanisms of autoimmune diseases. Previously, we discovered that the expression of OX40L and OX40 is significantly increased in the peripheral blood mononuclear cells (PBMCs) of ITP patients. In our present study, OX40L-induced follicular helper T (Tfh) cells exhibited an activated phenotype with elevated expression of inducible T-cell costimulator (ICOS), programmed cell death protein-1 (PD-1), and cluster of differentiation 40 ligand (CD40L) in vitro. Moreover, aberrant OX40L‒OX40 expression might promote the Tfh1-to-Tfh2 shift in vivo, inducing the generation of autoantibodies by enhancing the helper function of Tfh cells for B lymphocytes in a mouse model, which might accelerate the progression of ITP. Additionally, signal transduction through the OX40L‒OX40 axis might be related to the activation of tumor necrosis factor receptor-associated factor (TRAF)‒nuclear factor-κB (NF-κB) and Janus kinase (JAK)‒signal transducer and activator of transcription (STAT) signaling pathways. Overall, OX40L‒OX40 signaling is proposed as a potential novel therapeutic target for ITP.
Animals
;
OX40 Ligand/physiology*
;
Purpura, Thrombocytopenic, Idiopathic/immunology*
;
Cell Differentiation
;
Mice
;
T-Lymphocytes, Helper-Inducer/cytology*
;
T Follicular Helper Cells/cytology*
;
Signal Transduction
;
Receptors, OX40
;
Mice, Inbred C57BL
;
Humans
;
Female
4.Anti-tumor therapy strategy of CAR-T cells based on stem cell memory and central memory cells.
Weihua LIU ; Yifei WANG ; Xiaoting SUN ; Zhibin WANG
Chinese Journal of Cellular and Molecular Immunology 2024;40(12):1121-1126
Cancer immunotherapy including immune checkpoint inhibitors and adoptive cell therapy has gained revolutionary success in the treatment of hematologic tumors; however, it only gains limited success in solid tumors. For example, chimeric antigen receptor T (CAR-T) cell therapy has shown significant effects and potential for curing patients with B-cell malignancies. In contrast, it remains a challenge for CAR-T cell therapy to gain similar success in solid tumors. The anti-tumor effect of endogenous or adoptively transferred tumor-specific T cells depends largely on their differentiation status. T cells at early differentiation stage show better anti-tumor therapeutic effects than fully differentiated effector T cells. In cancer patients, the persistence of tumor-specific T cells with the stem cell memory or precursor phenotype is significantly associated with improved therapeutic outcomes; therefore, adoptively transfered CAR-T cells with stem cell memory and/or central memory is expected to gain better anti-tumor effects. Herein we focused on the in vitro optimized culture and expansion system to obtain CAR-T cells with stem cell memory or central memory phenotype for the review.
Humans
;
Immunotherapy, Adoptive/methods*
;
Receptors, Chimeric Antigen/genetics*
;
Neoplasms/immunology*
;
Immunologic Memory
;
T-Lymphocytes/immunology*
;
Memory T Cells/immunology*
;
Animals
;
Stem Cells/cytology*
;
Cell Differentiation
5.A human circulating immune cell landscape in aging and COVID-19.
Yingfeng ZHENG ; Xiuxing LIU ; Wenqing LE ; Lihui XIE ; He LI ; Wen WEN ; Si WANG ; Shuai MA ; Zhaohao HUANG ; Jinguo YE ; Wen SHI ; Yanxia YE ; Zunpeng LIU ; Moshi SONG ; Weiqi ZHANG ; Jing-Dong J HAN ; Juan Carlos Izpisua BELMONTE ; Chuanle XIAO ; Jing QU ; Hongyang WANG ; Guang-Hui LIU ; Wenru SU
Protein & Cell 2020;11(10):740-770
Age-associated changes in immune cells have been linked to an increased risk for infection. However, a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking. Here, we combined scRNA-seq, mass cytometry and scATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19. We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector, cytotoxic, exhausted and regulatory cells, along with increased late natural killer cells, age-associated B cells, inflammatory monocytes and age-associated dendritic cells. In addition, the expression of genes, which were implicated in coronavirus susceptibility, was upregulated in a cell subtype-specific manner with age. Notably, COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senescence. Therefore, these findings suggest that a dysregulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.
Adult
;
Aged
;
Aged, 80 and over
;
Aging
;
genetics
;
immunology
;
Betacoronavirus
;
CD4-Positive T-Lymphocytes
;
metabolism
;
Cell Lineage
;
Chromatin Assembly and Disassembly
;
Coronavirus Infections
;
immunology
;
Cytokine Release Syndrome
;
etiology
;
immunology
;
Cytokines
;
biosynthesis
;
genetics
;
Disease Susceptibility
;
Flow Cytometry
;
methods
;
Gene Expression Profiling
;
Gene Expression Regulation, Developmental
;
Gene Rearrangement
;
Humans
;
Immune System
;
cytology
;
growth & development
;
immunology
;
Immunocompetence
;
genetics
;
Inflammation
;
genetics
;
immunology
;
Mass Spectrometry
;
methods
;
Middle Aged
;
Pandemics
;
Pneumonia, Viral
;
immunology
;
Sequence Analysis, RNA
;
Single-Cell Analysis
;
Transcriptome
;
Young Adult
6.Therapeutic Effect of SPK1 Gene Transfected Adipose Derived Mesenchymal Stem Cells on Experimental Autoimmune Encephalomyelitis Mice and Its Effect on T Helper Cell 17/Regulatory T Cells Balance.
Tao ZHOU ; Chao Ping XU ; Ying XIAO ; Qian ZHANG ; Li LI
Acta Academiae Medicinae Sinicae 2020;42(6):755-765
Objective To investigate the therapeutic effect of SPK1 gene transfected adipose derived mesenchymal stem cells(ADMSC)on experimental autoimmune encephalomyelitis mice and the effect on T helper cell 17(Th17)/regulatory T(Treg) cells balance. Methods EAE was induced by myelin oligodendrocyte glycoprotein 35-55 in mice.Totally 44 mice were randomly divided into four groups:normal control group(NC group),model group(EAE group),ADMSC group,and ADMSC-SPK1 group.Forty days after injection,the pathological changes of brain and spinal cord,Th17/Treg-related inflammatory markers in brain tissue,expressions of interleukin-17A(IL-17A)and forkhead box protein p3(Foxp3)in brain and spinal cord tissue,and flow cytometric results of spleen immune cells were detected. Results Forty days after the injection,serious inflammatory cell infiltration and demyelination occurred in the brain and spinal cord of EAE group,whereas demyelination and axonal injury were improved in ADMSC group and ADMSC-SPK1 group.Compared with EAE group,the ADMSC group and ADMSC-SPK1 group had significantly improved levels of IL-17A(
Adipose Tissue/cytology*
;
Animals
;
Cytokines
;
Encephalomyelitis, Autoimmune, Experimental/therapy*
;
Interleukin-17
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred C57BL
;
Phosphotransferases (Alcohol Group Acceptor)/genetics*
;
T-Lymphocytes, Regulatory/cytology*
;
Th17 Cells/cytology*
;
Transfection
7.Astragalus membranaceus improves therapeutic efficacy of asthmatic children by regulating the balance of Treg/Th17 cells.
Wei WANG ; Qing-Bin LIU ; Wei JING
Chinese Journal of Natural Medicines (English Ed.) 2019;17(4):252-263
Astragalus membranaceus may be a potential therapy for childhood asthma but its driving mechanism remains elusive. The main components of A. membranaceus were identified by HPLC. The children with asthma remission were divided into two combination group (control group, the combination of budesonide and terbutaline) and A. membranaceus group (treatment group, the combination of budesonide, terbutaline and A. membranaceus). The therapeutic results were compared between two groups after 3-month therapy. Porcine peripheral blood mononuclear cells (PBMCs) were isolated from venous blood by using density gradient centrifugation on percoll. The levels of FoxP3, EGF-β, IL-17 and IL-23 from PBMCs and serum IgE were measured. The relative percentage of Treg/Th17 cells was determined using flow cytometry. The main components of A. membranaceus were calycosin-7-O-glucoside, isoquercitrin, ononin, calycosin, quercetin, genistein, kaempferol, isorhamnetin and formononetin, all of which may contribute to asthma therapy. Lung function was significantly improved in the treatment group when compared with a control group (P < 0.05). The efficacy in preventing the occurrence of childhood asthma was higher in the treatment group than the control group (P < 0.05). The levels of IgE, IL-17 and IL-23 were reduced significantly in the treatment group when compared with the control group, while the levels of FoxP3 and TGF-β were increased in the treatment group when compared with the control group (P < 0.05). A. membranaceus increased the percentage of Treg cells and reduced the percentage of Th17 cells. A. membranaceus is potential natural product for improving the therapeutic efficacy of combination therapy of budesonide and terbutaline for the children with asthma remission by modulating the balance of Treg/Th17 cells.
Animals
;
Asthma
;
drug therapy
;
immunology
;
Astragalus propinquus
;
chemistry
;
Budesonide
;
administration & dosage
;
Cells, Cultured
;
Child
;
Child, Preschool
;
Cytokines
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
pharmacology
;
Female
;
Humans
;
Immunologic Factors
;
administration & dosage
;
pharmacology
;
Leukocytes, Mononuclear
;
drug effects
;
metabolism
;
Lung
;
drug effects
;
physiology
;
Male
;
Swine
;
T-Lymphocytes, Regulatory
;
cytology
;
drug effects
;
Terbutaline
;
administration & dosage
;
Th17 Cells
;
cytology
;
drug effects
;
Treatment Outcome
8.Adoptive cell transfer therapy for hepatocellular carcinoma.
Renyu ZHANG ; Zhao ZHANG ; Zekun LIU ; Ding WEI ; Xiaodong WU ; Huijie BIAN ; Zhinan CHEN
Frontiers of Medicine 2019;13(1):3-11
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. This malignancy is associated with poor prognosis and high mortality. Novel approaches for prolonging the overall survival of patients with advanced HCC are urgently needed. The antitumor activities of adoptive cell transfer therapy (ACT), such as strategies based on tumor-infiltrating lymphocytes and cytokine-induced killer cells, are more effective than those of traditional strategies. Currently, chimeric antigen receptor T-cell (CAR-T) immunotherapy has achieved numerous breakthroughs in the treatment of hematological malignancies, including relapsed or refractory lymphoblastic leukemia and refractory large B-cell lymphoma. Nevertheless, this approach only provides a modest benefit in the treatment of solid tumors. The clinical results of CAR-T immunotherapy for HCC that could be obtained at present are limited. Some published studies have demonstrated that CAR-T could inhibit tumor growth and cause severe side effects. In this review, we summarized the current application of ACT, the challenges encountered by CAR-T technology in HCC treatment, and some possible strategies for the future direction of immunotherapeutic research.
Adoptive Transfer
;
methods
;
Carcinoma, Hepatocellular
;
immunology
;
therapy
;
Humans
;
Immunotherapy, Adoptive
;
methods
;
Liver Neoplasms
;
immunology
;
therapy
;
Lymphocytes, Tumor-Infiltrating
;
cytology
;
Randomized Controlled Trials as Topic
;
Receptors, Chimeric Antigen
;
T-Lymphocytes
;
cytology
9.Efficacy and safety of metformin for Behcet's disease and its effect on Treg/Th17 balance: a single-blinded, before-after study.
Chen YONG ; Luo DAN ; Lin CHENHONG ; Shen YAN ; Cai JIANFEI ; Guan JIANLONG
Journal of Southern Medical University 2019;39(2):127-133
OBJECTIVE:
Behcet's disease (BD) is an autoimmune disorder that causes most commonly mouth and genital ulcerations and erythema nodules of the skin and currently has limited options of therapeutic medicines. Metformin is recently reported to suppress immune reaction, and we hypothesized that metformin could be an option for treatment of BD.
METHODS:
Thirty patients with BD were enrolled in this perspective single-blinded, before-after study. We recorded the changes in the mucocutaneous activity index for BD (MAIBD), relapse frequency, C-reactive protein (CRP) level and erythrocyte sedimentation rate (ESR) after metformin treatment to assess the changes in the disease activity. We also analyzed the changes in the protein and mRNA expression levels of Foxp3, interleukin-35 (IL-35), transforming growth factor-β (TGF-β), Ror-γt, IL-17, and tumor necrosis factor- (TNF-) in these patients using ELISA and qRT-PCR.
RESULTS:
Of the 30 patients enrolled, 26 completed the trial. After the treatment, favorable responses were achieved in 88.46% (23/26) of the patients, and partial remission was obtained in 11.54% (4/26) of them. During the treatment, 8 patients complained of gastrointestinal side effects, for which 4 chose to withdraw from the study in the first week. Our results showed that metformin treatment decreased MAIBD and relapse frequency in the patients, and significantly lowered the clinical inflammatory indexes including CRP and ESR. The results of ELISA and qRT-PCR revealed that metformin treatment obviously increased Foxp3 and TGF-β expressions at both the protein and mRNA levels and significantly decreased the levels of ROR-γt, IL-17 and TNF- as well as IL-35 level in these patients.
CONCLUSIONS
Metformin treatment relieves the clinical symptoms, reduces the inflammatory reaction indexes and regulates the Treg/Th17 axis in patients with BD, suggesting the potential of metformin as a candidate medicine for treatment of BD.
Behcet Syndrome
;
drug therapy
;
metabolism
;
Controlled Before-After Studies
;
Forkhead Transcription Factors
;
metabolism
;
Humans
;
Immunosuppressive Agents
;
adverse effects
;
therapeutic use
;
Interleukin-17
;
metabolism
;
Interleukins
;
metabolism
;
Metformin
;
adverse effects
;
therapeutic use
;
Neoplasm Recurrence, Local
;
Nuclear Receptor Subfamily 1, Group F, Member 3
;
metabolism
;
RNA, Messenger
;
metabolism
;
Recurrence
;
Single-Blind Method
;
T-Lymphocytes, Regulatory
;
cytology
;
Th17 Cells
;
cytology
;
Transforming Growth Factor beta
;
metabolism
;
Tumor Necrosis Factor-alpha
;
metabolism
10.Rapamycin alleviates inflammation by up-regulating TGF-β/Smad signaling in a mouse model of autoimmune encephalomyelitis.
Zhenfei LI ; Lingling NIE ; Liping CHEN ; Yafei SUN ; Li GUO
Journal of Southern Medical University 2019;39(1):35-42
OBJECTIVE:
To evaluate the efficacy of rapmycin for treatment of experimental autoimmune encephalomyelitis (EAE) in mice and explore the underlying mechanism.
METHODS:
An EAE model was established in C57BL/6 mice. After immunization, the mice were divided into model group and rapamycin groups treated daily with low-dose (0.3 mg/kg) or high-dose (1 mg/kg) rapamycin. The clinical scores of the mice were observed using Knoz score, the infiltration of IL-17 cells in the central nervous system (CNS) was determined using immunohistochemistry; the differentiation of peripheral Treg cells was analyzed using flow cytometry, and the changes in the levels of cytokines were detected with ELISA; the changes in the expressions of p-Smad2 and p- smad3 were investigated using Western blotting.
RESULTS:
High-dose rapamycin significantly improved the neurological deficits scores of EAE mice. In high-dose rapamycin group, the scores in the onset stage, peak stage and remission stage were 0.14±0.38, 0.43±1.13 and 0.14±0.37, respectively, as compared with 1.14±0.69, 2.14±1.06 and 2.2±0.75 in the model group. The infiltration of inflammatory IL-17 cells was significantly lower in high-dose rapamycin group than in the model group (43±1.83 153.5±7.02). High-dose rapamycin obviously inhibited the production of IL-12, IFN-γ, IL-17 and IL-23 and induced the anti-inflammatory cytokines IL-10 and TGF-β. The percentage of Treg in CD4+ T cells was significantly higher in high- dose rapamycin group than in the model group (10.17 ± 0.68 3.52 ± 0.32). In the experiment, combined treatments of the lymphocytes isolated from the mice with rapamycin and TGF-β induced a significant increase in the number of Treg cells (13.66±1.89) compared with the treatment with rapamycin (6.23±0.80) or TGF-β (4.87±0.85) alone. Rapamycin also obviously up-regulated the expression of p-Smad2 and p-Smad3 in the lymphocytes.
CONCLUSIONS
Rapamycin can promote the differentiation of Treg cells by up-regulating the expression of p-Smad2 and p-smad3 to improve neurological deficits in mice with EAE.
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
therapeutic use
;
Cell Differentiation
;
drug effects
;
Encephalomyelitis, Autoimmune, Experimental
;
drug therapy
;
metabolism
;
Interferon-gamma
;
metabolism
;
Interleukins
;
metabolism
;
Lymphocytes
;
cytology
;
Mice
;
Mice, Inbred C57BL
;
Sirolimus
;
administration & dosage
;
therapeutic use
;
Smad Proteins
;
metabolism
;
T-Lymphocytes, Regulatory
;
cytology
;
drug effects
;
Transforming Growth Factor beta
;
metabolism
;
Up-Regulation

Result Analysis
Print
Save
E-mail