1.Mechanism of Der f 1/IGF-1 nanoparticle promoting the production of regulatory T cell.
Longpeng MA ; Xiangqian LUO ; Lihua MO ; Jialiang FAN ; Dabo LIU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(4):272-277
Objective:To prepare PLGA nanoparticles loaded with Der f 1/IGF-1(Der f 1/IGF-1 NPs) and investigate their role in promoting the formation of Treg cells. Methods:NPs coated with Der f 1/IGF-1 were prepared by double emulsion method and their physicochemical properties and cumulative release rate in vitro were analyzed. After pretreatment, BMDC was divided into Saline group, Blank NPs group, Der f 1/IGF-1 group and Der f 1/IGF-1 NPs group. Determination of the expression of IL-10 and TGF-β in BMDC by ELISA. The number of Treg cells was detected by flow cytometry. Results:The results showed that Der f 1/IGF-1 NPs were spherical structures, with good dispersion, particle size less than 200 nm, negative charge and stable slow-release effect of Zeta potential. After BMDC pretreatment, the expression levels of TGF-β and IL-10 in BMDC cells in the Der f 1/IGF-1 NPs group were significantly increased compared with the Blank NPs group, and the difference was statistically significant(P<0.001). After co-culture with CD4+ T cells, the proportion of Treg cells produced in the Der f 1/IGF-1 NPs group was significantly increased, and the difference was statistically significant(P<0.001). Conclusion:Der f 1/IGF-1 NPs can induce Treg cell generation in vitro. This study provides a new and more effective method for the reconstruction of immune tolerance dysfunction.
Humans
;
T-Lymphocytes, Regulatory/metabolism*
;
Interleukin-10/metabolism*
;
Insulin-Like Growth Factor I
;
Transforming Growth Factor beta
;
Nanoparticles/chemistry*
;
Particle Size
;
Drug Carriers/chemistry*
2.CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success?
Pooria SAFARZADEH KOZANI ; Pouya SAFARZADEH KOZANI ; Fatemeh RAHBARIZADEH
Frontiers of Medicine 2022;16(3):322-338
Immune-based therapies have experienced a pronounced breakthrough in the past decades as they acquired multiple US Food and Drug Administration (FDA) approvals for various indications. To date, six chimeric antigen receptor T cell (CAR-T) therapies have been permitted for the treatment of certain patients with relapsed/refractory hematologic malignancies. However, several clinical trials of solid tumor CAR-T therapies were prematurely terminated, or they reported life-threatening treatment-related damages to healthy tissues. The simultaneous expression of target antigens by healthy organs and tumor cells is partly responsible for such toxicities. Alongside targeting tumor-specific antigens, targeting the aberrantly glycosylated glycoforms of tumor-associated antigens can also minimize the off-tumor effects of CAR-T therapies. Tn, T, and sialyl-Tn antigens have been reported to be involved in tumor progression and metastasis, and their expression results from the dysregulation of a series of glycosyltransferases and the endoplasmic reticulum protein chaperone, Cosmc. Moreover, these glycoforms have been associated with various types of cancers, including prostate, breast, colon, gastric, and lung cancers. Here, we discuss how underglycosylated antigens emerge and then detail the latest advances in the development of CAR-T-based immunotherapies that target some of such antigens.
Antigens, Neoplasm/chemistry*
;
Biomarkers, Tumor/metabolism*
;
Glycosylation
;
Hematologic Neoplasms/drug therapy*
;
Humans
;
Immunotherapy, Adoptive/methods*
;
Male
;
Neoplasm Recurrence, Local/metabolism*
;
Receptors, Chimeric Antigen
;
T-Lymphocytes
;
United States
4.Construction of CAR-T cells targeting CS1 and analysis of their antitumor activity in vitro.
Weiguang ZHANG ; Chunling WANG ; Zhibo TAO ; Changlin YIN ; Jimin GAO
Chinese Journal of Biotechnology 2020;36(10):2162-2170
We constructed the CS1-targeted second- and third-generation CAR-T cells with genetic engineered 4-1BB or/and ICOS as a costimulatory signaling molecule by use of lentiviral platform. The CS1-targeted second-generation CAR-T cells with ICOS or 4-1BB had similar anti-neoplastic activity. When effector/target ratio was 1:1, the CAR-T cells with ICOS showed better killing effect on IM9-lucgfp cells than those with 4-1BB. However, The CS1-targeted third-generation CAR-T cells exihibited lower cytolytic capacity against IM9-lucgfp cells than the CS1-targeted second-generation CAR-T cells when the ratio of effector/target was 1:1, 2:1 or 5:1. When the ratio of effector/target was 10:1, the killing efficacy of both the second- and third-generation CAR-T cells against IM9-lucgfp cells was more than 85%, significantly higher than that of the control T cells. Taken together, both the CS1-targeted second- and third-generation CAR-T cells with ICOS or/and 4-1BB could efficiently kill CS1-positive multiple myeloma cells, but the CS1-targeted second-generation CAR-T cells had more potent killing effect on CS1-positive multiple myeloma cells than the CS1-targeted third-generation CAR-T cells.
4-1BB Ligand/metabolism*
;
Cell Line, Tumor
;
Genetic Engineering
;
Humans
;
Inducible T-Cell Co-Stimulator Protein/metabolism*
;
Multiple Myeloma/therapy*
;
Signal Transduction
;
T-Lymphocytes/chemistry*
;
Xenograft Model Antitumor Assays
5.Astragalus membranaceus improves therapeutic efficacy of asthmatic children by regulating the balance of Treg/Th17 cells.
Wei WANG ; Qing-Bin LIU ; Wei JING
Chinese Journal of Natural Medicines (English Ed.) 2019;17(4):252-263
Astragalus membranaceus may be a potential therapy for childhood asthma but its driving mechanism remains elusive. The main components of A. membranaceus were identified by HPLC. The children with asthma remission were divided into two combination group (control group, the combination of budesonide and terbutaline) and A. membranaceus group (treatment group, the combination of budesonide, terbutaline and A. membranaceus). The therapeutic results were compared between two groups after 3-month therapy. Porcine peripheral blood mononuclear cells (PBMCs) were isolated from venous blood by using density gradient centrifugation on percoll. The levels of FoxP3, EGF-β, IL-17 and IL-23 from PBMCs and serum IgE were measured. The relative percentage of Treg/Th17 cells was determined using flow cytometry. The main components of A. membranaceus were calycosin-7-O-glucoside, isoquercitrin, ononin, calycosin, quercetin, genistein, kaempferol, isorhamnetin and formononetin, all of which may contribute to asthma therapy. Lung function was significantly improved in the treatment group when compared with a control group (P < 0.05). The efficacy in preventing the occurrence of childhood asthma was higher in the treatment group than the control group (P < 0.05). The levels of IgE, IL-17 and IL-23 were reduced significantly in the treatment group when compared with the control group, while the levels of FoxP3 and TGF-β were increased in the treatment group when compared with the control group (P < 0.05). A. membranaceus increased the percentage of Treg cells and reduced the percentage of Th17 cells. A. membranaceus is potential natural product for improving the therapeutic efficacy of combination therapy of budesonide and terbutaline for the children with asthma remission by modulating the balance of Treg/Th17 cells.
Animals
;
Asthma
;
drug therapy
;
immunology
;
Astragalus propinquus
;
chemistry
;
Budesonide
;
administration & dosage
;
Cells, Cultured
;
Child
;
Child, Preschool
;
Cytokines
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
pharmacology
;
Female
;
Humans
;
Immunologic Factors
;
administration & dosage
;
pharmacology
;
Leukocytes, Mononuclear
;
drug effects
;
metabolism
;
Lung
;
drug effects
;
physiology
;
Male
;
Swine
;
T-Lymphocytes, Regulatory
;
cytology
;
drug effects
;
Terbutaline
;
administration & dosage
;
Th17 Cells
;
cytology
;
drug effects
;
Treatment Outcome
6.Meta-analysis on effect of Grifola frondosa polysaccharide in regulating in vivo immunoregulatory function on animal disease models.
Ting ZHANG ; Fei ZHAO ; Kai-Nan WU ; Yu JIA ; Xu-Liang LIAO ; Feng-Wen YANG ; Jun-Hua ZHANG ; Bin MA
China Journal of Chinese Materia Medica 2019;44(23):5174-5183
The study aimed to explore the in vivo immunoregulatory function of Grifola frondosa polysaccharide( GFP) on animal disease models. Databases of PubMed,Embase,Web of Scinece,CNKI,CBM and Wan Fang Data were searched from the date of their establishment to February 2018. Two reviewers independently screened included studies and evaluated their quality by using SYRCLE's risk of bias tool. R software was used to analyze the data. Finally,20 animal experiment studies were included. According to Metaanalysis. For cellular immunity,GFP could effectively enhance the proliferation of effect or T cells,natural killer cells and macrophages in mice. The percentage of CD4+T cells( MD = 1. 89,95% CI [0. 94,2. 83],P < 0. 000 1),CD8+T cells( MD = 8. 46,95% CI[5. 93,11. 00],P<0. 000 1),NK cells( MD= 2. 67,95% CI [0. 23,5. 11],P= 0. 03),and macrophages( MD= 14. 09,95% CI[0. 84,27. 34],P= 0. 04) were all higher than those in control group. For humoral immunity,GFP could increase the secretion of TNF-α and INF-γ. The secretion of TNF-α( SMD = 15. 92,95% CI [9. 07,22. 76],P<0. 000 1) and INF-γ( SMD = 5. 34,95% CI[3. 42,7. 26],P<0. 000 1) were all higher than those in control group. In conclusion,GFP could regulate immunologic function by enhancing the proliferation activity of immune cells( CD4+T cells,CD8+T cells,NK cells and macrophages) and the secretion of immune factors( TNF-α and INF-γ) . However,it is necessary to further standardize the selection of specific surface markers of immune cells and the administration of GFP,in order to reduce the heterogeneity among the studies. At the same time,more attention shall be paid to experimental design,implementation and full report,especially to the establishment and implementation of animal experimental registration system,so as to improve the transparency and quality of the whole process of animal experimental research,enhance the value of basic research ultimately,and provide a reliable theoretical basis for the transformation of basic research into clinical research.
Animals
;
Cytokines/immunology*
;
Disease Models, Animal
;
Grifola/chemistry*
;
Immune System
;
Killer Cells, Natural/immunology*
;
Macrophages/immunology*
;
Mice
;
Polysaccharides/pharmacology*
;
T-Lymphocytes/immunology*
7.Regulatory effect of Vav1 on T cells and its relation to clinical diseases.
Journal of Zhejiang University. Medical sciences 2018;47(1):75-81
Vav1, as a key downstream signaling molecule of T cell receptor, includes a catalytic core DH-PH-ZF domain with the function as guanine nucleotide exchange factor (GEF), and a SH3-SH2-SH3 domain with the function as adaptor protein. These two structures of Vav1 play different roles in the development, activation, proliferation and function of T cells, and thereby exert the different regulatory effect on the occurrence and development of autoimmune disease, graft rejection, cancer and other clinical conditions, implicating that Vav1 might be a potential therapeutic target for these diseases. This paper reviews the role of Vav1 in T cells and the occurrence of related diseases.
Adaptor Proteins, Signal Transducing
;
Animals
;
Autoimmune Diseases
;
genetics
;
physiopathology
;
Humans
;
Neoplasms
;
genetics
;
physiopathology
;
Proto-Oncogene Proteins c-vav
;
chemistry
;
immunology
;
metabolism
;
T-Lymphocytes
8.Redirecting T cells to glypican-3 with 28.41BB.ζ and 28.ζ-41BBL CARs for hepatocellular carcinoma treatment.
Haili MA ; Siye CHEN ; Yan HE ; Jingwei HUANG ; Yanhong XU ; Chao WANG ; Cheng LEI ; Ting LU ; Shengdong XIAO ; Jinming MAO ; Yiyun XU ; Hao GUO ; Bohua LI ; Minghui ZHANG ; Xiaowen HE
Protein & Cell 2018;9(7):664-669
Antineoplastic Agents
;
chemistry
;
pharmacology
;
Carcinoma, Hepatocellular
;
drug therapy
;
immunology
;
pathology
;
Cytokines
;
immunology
;
Drug Screening Assays, Antitumor
;
Glypicans
;
antagonists & inhibitors
;
immunology
;
Humans
;
Ligands
;
Liver Neoplasms
;
drug therapy
;
immunology
;
pathology
;
T-Lymphocytes
;
drug effects
;
immunology
9.Carnosic acid enhances the anti-lung cancer effect of cisplatin by inhibiting myeloid-derived suppressor cells.
Wen LIU ; Tian-Cong WU ; Dong-Mei HONG ; Yue HU ; Ting FAN ; Wen-Jie GUO ; Qiang XU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(12):907-915
Cisplatin and other platinum-based drugs are used frequently for treatment of lung cancer. However, their clinical performance are usually limited by drug resistance or toxic effects. Carnosic acid, a polyphenolic diterpene isolated from Rosemary (Rosemarinus officinalis), has been reported to have several pharmacological and biological activities. In the present study, the combination effect of cisplatin plus carnosic acid on mouse LLC (Lewis lung cancer) xenografts and possible underlying mechanism of action were examined. LLC-bearing mice were treated with intraperitoneal injection with cisplatin, oral gavage with carnosic acid, or combination with cisplatin and carnosic acid, respectively. Combination of carnosic acid and cisplatin yielded significantly better anti-growth and pro-apoptotic effects on LLC xenografts than drugs alone. Mechanistic study showed that carnosic acid treatment boosted the function of CD8 T cells as evidenced by higher IFN-γ secretion and higher expression of FasL, perforin as well as granzyme B. In the meantime, the proportion of MDSC (myeloid-derived suppressor cells) in tumor tissues were reduced by carnosic acid treatment and the mRNA levels of iNOS2, Arg-1, and MMP9, which are the functional markers for MDSC, were reduced. In conclusion, our study proved that the functional suppression of MDSC by carnosic acid promoted the lethality of CD8 T cells, which contributed to the enhancement of anti-lung cancer effect of cisplatin.
Abietanes
;
administration & dosage
;
Animals
;
Antineoplastic Agents
;
administration & dosage
;
CD8-Positive T-Lymphocytes
;
drug effects
;
immunology
;
Carcinoma, Lewis Lung
;
drug therapy
;
genetics
;
immunology
;
Cell Line, Tumor
;
Cisplatin
;
administration & dosage
;
Drug Synergism
;
Humans
;
Interferon-gamma
;
genetics
;
immunology
;
Lung Neoplasms
;
drug therapy
;
genetics
;
immunology
;
Matrix Metalloproteinase 9
;
genetics
;
Mice
;
Mice, Inbred C57BL
;
Myeloid-Derived Suppressor Cells
;
drug effects
;
immunology
;
Plant Extracts
;
administration & dosage
;
Rosmarinus
;
chemistry
10.Increasing the safety and efficacy of chimeric antigen receptor T cell therapy.
Protein & Cell 2017;8(8):573-589
Chimeric antigen receptor (CAR) T cell therapy is a promising cancer treatment that has recently been undergoing rapid development. However, there are still some major challenges, including precise tumor targeting to avoid off-target or "on-target/off-tumor" toxicity, adequate T cell infiltration and migration to solid tumors and T cell proliferation and persistence across the physical and biochemical barriers of solid tumors. In this review, we focus on the primary challenges and strategies to design safe and effective CAR T cells, including using novel cutting-edge technologies for CAR and vector designs to increase both the safety and efficacy, further T cell modification to overcome the tumor-associated immune suppression, and using gene editing technologies to generate universal CAR T cells. All these efforts promote the development and evolution of CAR T cell therapy and move toward our ultimate goal-curing cancer with high safety, high efficacy, and low cost.
Cell Movement
;
immunology
;
Cell Proliferation
;
Gene Expression
;
Genetic Vectors
;
chemistry
;
metabolism
;
Humans
;
Immunotherapy, Adoptive
;
methods
;
Lymphocyte Activation
;
Lymphocytes, Tumor-Infiltrating
;
cytology
;
immunology
;
transplantation
;
Neoplasms
;
genetics
;
immunology
;
pathology
;
therapy
;
Patient Safety
;
Receptors, Antigen, T-Cell
;
chemistry
;
genetics
;
immunology
;
Recombinant Fusion Proteins
;
chemistry
;
genetics
;
immunology
;
Signal Transduction
;
Single-Chain Antibodies
;
chemistry
;
genetics
;
T-Lymphocytes
;
cytology
;
immunology
;
transplantation
;
Treatment Outcome

Result Analysis
Print
Save
E-mail