1.Mechanism of 4-methylcatechol in inhibiting fibroblast-like synoviocyte migration and suppressing inflammatory responses in treatment of rheumatoid arthritis.
Zhendong YING ; Peng WANG ; Lei ZHANG ; Dailing CHEN ; Qiuru WANG ; Qibin LIU ; Tiantian TANG ; Changjun CHEN ; Qingwei MA
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(8):1051-1060
OBJECTIVE:
To investigate the effects of 4-methylcatechol (4MC) on the migration and inflammatory response in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS), as well as its underlying mechanisms of action.
METHODS:
RA-FLS was isolated from synovial tissue donated by RA patients, and the optimal concentration of 4MC was determined by cell counting kit 8 method for subsequent experiments, and the effect of 4MC on the migratory ability of RA-FLS was evaluated via a cell scratch assay. An inflammation model of RA-FLS was induced by tumor necrosis factor α (TNF-α). Real-time fluorescence quantitative PCR and ELISA were employed to detect the gene and protein expression levels of interleukin-1β (IL-1β) and IL-6 in RA-FLS and their culture supernatants, respectively, thereby investigating the anti-inflammatory effects of 4MC. Western blot was used to examine the expressions of nuclear factor κB (NF-κB) signaling pathway-related proteins, including inhibitor of NF-κB-α (IKBα), phosphorylated (P)-IκBα, NF-κB-inducing kinase α (IKKα), P-IKKαβ, P-p65, and p65. Cellular immunofluorescence was utilized to detect the expression and localization of p65 in RA-FLS, exploring whether 4MC exerts its anti-inflammatory effects by regulating the NF-κB signaling pathway. Finally, a collagen-induced arthritis (CIA) mouse model was established. The anti-RA effect of 4MC in vivo was evaluated by gross observation and histological examination.
RESULTS:
4MC inhibited RA-FLS migration in a concentration-dependent manner. In the TNF-α-induced RA-FLS inflammation model, 4MC significantly decreased the gene and protein expression levels of IL-1β and IL-6. Furthermore, 4MC markedly reduced the ratios of P-IΚBα/IΚBα, P-IKKαβ/IKKα, and P-p65/p65, thereby blocking the transcriptional activity of p65 by inhibiting its nuclear translocation. This mechanism effectively suppressed the activation of the TNF-α-mediated NF-κB signaling pathway. Animal studies demonstrated that 4MC [10 mg/(kg·day)] significantly lowered serum levels of IL-1β, IL-6, and TNF-α, and alleviated arthritis severity and bone destruction in CIA mice.
CONCLUSION
4MC not only inhibits the migration of RA-FLS but also mitigates their inflammatory response by suppressing the NF-κB signaling pathway, thereby effectively exerting its anti-RA effects.
Synoviocytes/metabolism*
;
Arthritis, Rheumatoid/metabolism*
;
Animals
;
Cell Movement/drug effects*
;
Humans
;
Catechols/therapeutic use*
;
Fibroblasts/drug effects*
;
Mice
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Interleukin-1beta/metabolism*
;
Interleukin-6/metabolism*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Transcription Factor RelA/metabolism*
;
Synovial Membrane/cytology*
;
Cells, Cultured
;
Male
;
Arthritis, Experimental
;
Anti-Inflammatory Agents/pharmacology*
;
NF-KappaB Inhibitor alpha
;
Inflammation
2.Role and mechanism of ubiquitin-specific protease 35 in ferroptosis of rheumatoid arthritis-fibroblast like synoviocytes.
Lianghua FENG ; Lirong HONG ; Yujia CHEN ; Xueming CAI
Journal of Peking University(Health Sciences) 2025;57(5):919-925
OBJECTIVE:
To elucidate the role and underlying mechanism of ubiquitin-specific protease 35 (USP35) in ferroptosis of rheumatoid arthritis-fibroblast like synoviocytes (RA-FLS), thereby enhancing our comprehension of the pathogenesis of RA and identifying potential therapeutic targets for its treatment.
METHODS:
(1) RA-FLS were cultured in vitro and transduced with lentiviral vectors to establish stable cell lines: A USP35-knockdown line (short hairpin ribonucleic acid of USP35, shUSP35) and its control (negtive control of short hairpin ribonucleic acid, shNC), as well as a overexpression of USP35 line (USP35 OE) and its control (Vector). To investigate the role of USP35 in ferroptosis regulation, a ferroptosis model was induced in RA-FLS by treatment with 1 μmol/L Erastin. The cells were divided into six groups: shNC, shNC + Erastin, shUSP35 + Erastin, Vector, Vector + Erastin, and USP35 OE + Erastin. (2) Cell viability was detected using the cell counting kit-8 (CCK-8). (3) Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione/glutathione disulfide (GSH/GSSG) ratios, and Ferrous ion (Fe2+) levels were measured using specific assay kits to evaluate oxidative stress, lipid peroxidation, and glutathione redox status in the cells. (4) Protein expression levels of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) were detected using Western blotting to investigate their potential involvement in USP35-mediated ferroptosis regulation.
RESULTS:
(1) Compared with the shNC +Erastin group, the cell viability of the shUSP35+Erastin group was significantly decreased (P < 0.001), while it was notably increased in the USP35 OE+Erastin group compared with the Vector+Erastin group (P < 0.001). These findings indicated that USP35 could alleviate the inhibitory effect of Erastin on RA-FLS cell viability. (2) In comparison to the shNC+Erastin group, the levels of ROS (P < 0.001), MDA (P < 0.05), and Fe2+ (P < 0.001) were significantly elevated, and the GSH/GSSG ratio was increased (P < 0.05) in the shUSP35+Erastin group. Conversely, the levels of ROS (P < 0.001), MDA (P < 0.05), and Fe2+ (P < 0.05) were significantly decreased, and the GSH/GSSG ratio was decreased (P < 0.05) in the USP35 OE+Erastin group compared with the Vector+Erastin group. These results suggested that USP35 could inhibit Erastin-induced oxidative stress and lipid peroxidation in RA-FLS. (3) In Erastin-induced RA-FLS, the expression of USP35 was positively correlated with the protein levels of SLC7A11 and GPX4, indicating a potential mechanism by which USP35 regulated ferroptosis in these cells.
CONCLUSION
USP35 inhibits ferroptosis in RA-FLS, potentially through the increased expression of SLC7A11 and GPX4.
Ferroptosis
;
Humans
;
Arthritis, Rheumatoid/metabolism*
;
Synoviocytes/pathology*
;
Reactive Oxygen Species/metabolism*
;
Ubiquitin-Specific Proteases/metabolism*
;
Fibroblasts/pathology*
;
Cell Survival
;
Piperazines/pharmacology*
;
Endopeptidases/metabolism*
;
Cells, Cultured
;
Cell Line
;
Amino Acid Transport System y+
3.Role of Non-coding RNAs in Rheumatoid Arthritis and Supervision Mechanism of Chinese Medicine.
Shu LI ; Hao-Xiang FANG ; Lei WAN ; Jian LIU
Chinese journal of integrative medicine 2025;31(7):649-659
The prevalence of rheumatoid arthritis (RA) has sharply increased in recent years, posing a serious threat to human health. RA is characterized as a chronic, multisystem disease with morning stiffness and symmetric small joint pain. However, its fundamental processes are poorly understood. With the advancements in molecular biology techniques, a growing body of research indicates that numerous non-coding RNAs (ncRNAs) are essential for the pathogenesis of RA. These ncRNAs not only contribute to the onset of RA but also play a role in the pathological processes of RA development, including synovial immune inflammation and bone destruction. Chinese medicine (single compounds, single herbs, and compound formulae, as well as non-drug therapies such as acupuncture and moxibustion), offer significant benefits for treating RA. This study examined the role of 3 different ncRNA types (circular RNA, long ncRNA, and microRNA) as biomarkers in RA diagnosis, as well as their regulatory roles in rheumatoid arthritis fibroblast-like synoviocytes functions such as inflammatory response, proliferation, cell cycle, apoptosis, and invasion. Additionally, the study explored the mechanisms by which Chinese medicine regulates these ncRNAs, with the goal of offering innovative strategies for RA treatment.
Arthritis, Rheumatoid/pathology*
;
Humans
;
RNA, Untranslated/metabolism*
;
Medicine, Chinese Traditional
;
Synoviocytes/metabolism*
;
RNA, Circular
;
Biomarkers/metabolism*
;
Apoptosis/genetics*
4.LINC00837/miR-671-5p/SERPINE2 functional axis promotes pathological processes of fibroblast-like synovial cells in rheumatoid arthritis.
Zhoufang CAO ; Yuan WANG ; Mengna WANG ; Yue SUN ; Feifei LIU
Journal of Southern Medical University 2025;45(2):371-378
OBJECTIVES:
To investigate the regulatory effect of LINC00837/miR-671-5p/SERPINE2 functional axis on pathological processes of fibroblast-like synovial cells (FLS) in rheumatoid arthritis (RA).
METHODS:
RA-FLS were transfected with a LINC00837 overexpression plasmid (pcDNA3.1-LINC00837), a LINC00837 interference plasmid (siRNA-LINC00837), or their respective negative control plasmids (pcDNA3.1-NC and siRNA-NC). Dual luciferase was used to verify the targeting relationship between LINC00837 and miR-671-5p and between miR-671-5p and SERPINE2. RT-qPCR was used to detect the expression levels of LINC00837, miR-671-5p and SERPINE2 in normal FLS or the transfected cells, whose proliferation and migration abilities were assessed using Edu assay and scratch healing assay and by detecting the expression levels of Ki-67, PCNA, E-cadherin and N-cadherin with Western blotting. The changes in cellular secretion of the inflammatory cytokines (TNF‑α, IL-17, IL-4 and IL-10) were examined using ELISA.
RESULTS:
Dual luciferase reporter gene assay showed that LINC00837 was capable of binding to the 3'-UTR of miR-671-5p, and the latter bound to the 3-UTR of SERPINE2 at specific binding sites between them. Compared with normal FLS, RA-FLS showed significantly increased expressions of LINC00837 and SERPINE2, lowered miR-671-5p expression and enhanced proliferation and migration abilities with increased expressions of pro-inflammatory cytokines and reduced expressions of anti-inflammatory cytokines. Transfection of RA-FLS with pcDNA-LINC00837 further enhanced cell proliferation and migration and the changes in the inflammatory cytokines, while transfection with si-LINC00837 produced the opposite changes.
CONCLUSIONS
RA-FLS have a LINC00837/miR-671-5p/SERPINE2 functional axis, which regulates cell proliferation, migration and secretion of inflammatory factors, and interventions targeting LINC00837 may provide a potential strategy to regulate the pathological processes in RA-FLS.
Arthritis, Rheumatoid/metabolism*
;
MicroRNAs/metabolism*
;
Humans
;
Cell Proliferation
;
Cell Movement
;
Synovial Membrane/pathology*
;
RNA, Long Noncoding/genetics*
;
Fibroblasts/metabolism*
;
Synoviocytes/metabolism*
;
Cells, Cultured
;
Transfection
5.Effect of Juanbi Qianggu Formula on biological behaviors of fibroblast-like synoviocytes in rheumatoid arthritis by regulating FGFR1 signaling pathway based on network pharmacology and cell function experiments.
Xiao-Hui MENG ; Sheng ZHONG ; Hai-Hui HAN ; Qi SHI ; Song-Tao SUN ; Lian-Bo XIAO
China Journal of Chinese Materia Medica 2023;48(18):4864-4873
This study aimed to explore the molecular mechanism of Juanbi Qianggu Formula(JBQGF), an empirical formula formulated by the prestigious doctor in traditional Chinese medicine, in the treatment of rheumatoid arthritis based on network pharmacology and cell function experiments. The main active components and targets of JBQGF were obtained through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and Encyclopedia of Traditional Chinese Medicine(ETCM), and the core targets underwent functional enrichment analysis and signaling pathway analysis. Cytoscape 3.6.0 was used to construct a visualized "active component-target-signaling pathway" network of JBQGF. After screening, nine potential pathways of JBQGF were obtained, mainly including G protein-coupled receptor signaling pathway and tyrosine kinase receptor signaling pathway. As previously indicated, the fibroblast growth factor receptor 1(FGFR1) signaling pathway was highly activated in active fibroblast-like synoviocytes(FLS) in rheumatoid arthritis, and cell and animal experiments demonstrated that inhibition of the FGFR1 signaling pathway could significantly reduce joint inflammation and joint destruction in collagen-induced arthritis(CIA) rats. In terms of the tyrosine kinase receptor signal transduction pathway, the analysis of its target genes revealed that FGFR1 might be a potential target of JBQGF for rheumatoid arthritis treatment. The biological effect of JBQGF by inhibiting FGFR1 phosphorylation was preliminarily verified by Western blot, Transwell invasion assay, and pannus erosion assay, thereby inhibiting matrix metalloproteinase 2(MMP2) and receptor activator of nuclear factor-κB ligand(RANKL) and suppressing the invasion of fibroblasts in rheumatoid arthritis and erosive effect of pannus bone. This study provides ideas for searching potential targets of rheumatoid arthritis treatment and TCM drugs through network pharmacology.
Rats
;
Animals
;
Synoviocytes
;
Matrix Metalloproteinase 2/metabolism*
;
Network Pharmacology
;
Receptor, Fibroblast Growth Factor, Type 1/therapeutic use*
;
Arthritis, Rheumatoid/genetics*
;
Signal Transduction
;
Fibroblasts
;
Drugs, Chinese Herbal/therapeutic use*
6.Berberine inhibits autophagy and promotes apoptosis of fibroblast-like synovial cells from rheumatoid arthritis patients through the ROS/mTOR signaling pathway.
Shiye ZONG ; Jing ZHOU ; Weiwei CAI ; Yun YU ; Ying WANG ; Yining SONG ; Jingwen CHENG ; Yuhui LI ; Yi GAO ; Baihai WU ; He XIAN ; Fang WEI
Journal of Southern Medical University 2023;43(4):552-559
OBJECTIVE:
To evaluate the regulatory effect of berberine on autophagy and apoptosis balance of fibroblast-like synoviocytes (FLSs) from patients with in rheumatoid arthritis (RA) and explore the mechanism.
METHODS:
The inhibitory effect of 10, 20, 30, 40, 50, 60, 70, and 80 μmol/L berberine on RA-FLS proliferation was assessed using CCK-8 method. Annexin V/PI and JC-1 immunofluorescence staining was used to analyze the effect of berberine (30 μmol/L) on apoptosis of 25 ng/mL TNF-α- induced RA-FLSs, and Western blotting was performed to detect the changes in the expression levels of autophagy- and apoptosis-related proteins. The cells were further treated with the autophagy inducer RAPA and the autophagy inhibitor chloroquine to observe the changes in autophagic flow by laser confocal detection of mCherry-EGFP-LC3B. RA-FLSs were treated with the reactive oxygen species (ROS) mimic H2O2 or the ROS inhibitor NAC, and the effects of berberine on ROS, mTOR and p-mTOR levels were observed.
RESULTS:
The results of CCK-8 assay showed that berberine significantly inhibited the proliferation of RA-FLSs in a time- and concentration-dependent manner. Flow cytometry and JC-1 staining showed that berberine (30 μmol/L) significantly increased apoptosis rate (P < 0.01) and reduced the mitochondrial membrane potential of RA-FLSs (P < 0.05). Berberine treatment obviously decreased the ratios of Bcl-2/Bax (P < 0.05) and LC3B-II/I (P < 0.01) and increased the expression of p62 protein in the cells (P < 0.05). Detection of mCherry-EGFP-LC3B autophagy flow revealed obvious autophagy flow block in berberine-treated RA-FLSs. Berberine significantly reduced the level of ROS in TNF-α-induced RA-FLSs and upregulated the expression level of autophagy-related protein p-mTOR (P < 0.01); this effect was regulated by ROS level, and the combined use of RAPA significantly reduced the pro-apoptotic effect of berberine in RA-FLSs (P < 0.01).
CONCLUSION
Berberine can inhibit autophagy and promote apoptosis of RA-FLSs by regulating the ROS-mTOR pathway.
Humans
;
Synoviocytes
;
Berberine/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Hydrogen Peroxide/metabolism*
;
Sincalide/metabolism*
;
Cell Proliferation
;
Arthritis, Rheumatoid/metabolism*
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis
;
Fibroblasts
;
Autophagy
;
Cells, Cultured
7.Role of ceRNA network in inflammatory cells of rheumatoid arthritis.
Xiaoyu HE ; Haohua HE ; Yan ZHANG ; Tianyu WU ; Yongjie CHEN ; Chengzhi TANG ; Tian XIA ; Xiaonan ZHANG ; Changhao XIE
Journal of Central South University(Medical Sciences) 2023;48(5):750-759
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease caused by inflammatory cells. Various inflammatory cells involved in RA include fibroblast-like synoviocytes, macrophages, CD4+T-lymphocytes, B lymphocytes, osteoclasts and chondrocytes. The close interaction between various inflammatory cells leads to imbalance of immune response and disorder of the expression of mRNA in inflammatory cells. It helps to drive production of pro-inflammatory cytokines and stimulate specific antigen-specific T- and B-lymphocytes to produce autoantibodies which is an important pathogenic factor for RA. Competing endogenous RNA (ceRNA) can regulate the expression of mRNA by competitively binding to miRNA. The related ceRNA network is a new regulatory mechanism for RNA interaction. It has been found to be involved in the regulation of abnormal biological processes such as proliferation, apoptosis, invasion and release of inflammatory factors of RA inflammatory cells. Understanding the ceRNA network in 6 kinds of RA common inflammatory cells provides a new idea for further elucidating the pathogenesis of RA, and provides a theoretical basis for the discovery of new biomarkers and effective therapeutic targets.
Humans
;
Arthritis, Rheumatoid/genetics*
;
MicroRNAs/metabolism*
;
Synoviocytes/pathology*
;
Cytokines/metabolism*
;
RNA, Messenger/metabolism*
;
Fibroblasts/pathology*
;
Cell Proliferation
8.Effects of Jinwu Jiangu recipe on IL-17/STAT3 signals in rheumatoid arthritis synoviocytes.
Wu-Kai MA ; Rong LI ; Qiao-Yi NING ; Ying HUANG ; Fang TANG ; Dao-Min LU ; Xue-Ming YAO
China Journal of Chinese Materia Medica 2018;43(3):585-590
This paper aimed to investigate the effects of Jinwu Jiangu recipe total extract on the IL-17/STAT3 signals in rheumatoid arthritis synovial fibroblasts(RASF). The primary RASFs were cultured by tissue piece method , and divided into blank control group, Jinwu Jiangu recipe low dose group, Jinwu Jiangu recipe middle dose group, Jinwu Jiangu recipe high dose group, and tripterygium glycosides control group. They were then treated with corresponding serum free medium, different doses of Jinwu Jiangu recipe total extract(0.06, 0.6, 6.0 g·L⁻¹), and tripterygium glycosides(0.03 g·L⁻¹) respectively for 24 hours. The gene expression levels of RORα, RORγt, and STAT3 mRNA were detected by polymerase chain reaction(PCR), and the protein activity of IL-17R and pSTAT3 were measured by Western blot assay. The results showed that as compared with blank control group, the expression levels of RORα, RORγt, IL-17R and STAT3 mRNA in RASF were significantly declined(<0.01). As compared with tripterygium glycosides control group, Jinwu Jiangu recipe total extract middle dose group and high dose group can down-regulate the expression levels of RORα, RORγt, IL-17R and STAT3 mRNA(<0.05), and the effect was more obvious in high dose group(<0.01). As compared with blank control group, the protein expression levels of IL-17R and pSTAT3 in each treatment group were obviously decreased(<0.01). As compared with tripterygium glycosides control group, Jinwu Jiangu recipe high dose group had more obvious effect in down-regulating the protein expression of pSTAT3(<0.01). Therefore, Miao medicine Jinwu Jiangu recipe total extract can down-regulate the expressions of RORα, RORγt, and STAT3 mRNA, and inhibit the protein activity of IL-17R and pSTAT3 in RASF.
Arthritis, Rheumatoid
;
Cells, Cultured
;
Drugs, Chinese Herbal
;
pharmacology
;
Fibroblasts
;
Gene Expression Regulation
;
Humans
;
Nuclear Receptor Subfamily 1, Group F, Member 1
;
metabolism
;
Nuclear Receptor Subfamily 1, Group F, Member 3
;
metabolism
;
Receptors, Interleukin-17
;
metabolism
;
STAT3 Transcription Factor
;
metabolism
;
Synovial Membrane
;
Synoviocytes
;
drug effects
9.Madecassoside impedes invasion of rheumatoid fibroblast-like synoviocyte from adjuvant arthritis rats via inhibition of NF-κB-mediated matrix metalloproteinase-13 expression.
Wei-Guang YU ; Yong SHEN ; Jian-Zhong WU ; Yan-Bing GAO ; Li-Xing ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(5):330-338
Fibroblast-like synoviocytes (FLS) play a pivotal role in Rheumatoid arthritis (RA) pathogenesis through aggressive migration and invasion. Madecassoside (Madec), a triterpenoid saponin present in Centella asiatica herbs, has a potent anti-inflammatory effect. In the present study, Madec exerted an obvious therapeutic effect in reversing the histological lesions in adjuvant-induced arthritis (AIA) rats. To recognize the anti-rheumatoid potentials of Madec, we further investigated whether Madec interfered with FLS invasion and metalloproteinase (MMP) expression. In cultures of primary FLS isolated from the AIA rats, Madec (10 and 30 μmol·L) was proven to considerably inhibit migration and invasion of FLS induced by interleukin 1β (IL-1β), but exhibiting no obvious effect on cell proliferation. Madec repressed IL-1β-triggered FLS invasion by prohibiting the expression of MMP-13. Additionally, Madec suppressed MMP-13 transcription via inhibiting the MMP-13 promoter-binding activity of NF-κB. Our results further showed that Madec down-regulated the translocation and phosphorylation of NF-κB as demonstrated by Western blotting and immunofluorescence assays. In conclusion, our results suggest that Madec exerts anti-RA activity via inhibiting the NF-κB/MMP-13 pathway.
Animals
;
Antirheumatic Agents
;
chemistry
;
pharmacology
;
therapeutic use
;
Arthritis, Experimental
;
chemically induced
;
drug therapy
;
pathology
;
Cell Movement
;
drug effects
;
Cell Nucleus
;
metabolism
;
Cells, Cultured
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Interleukin-1beta
;
pharmacology
;
Matrix Metalloproteinase 13
;
genetics
;
NF-kappa B
;
genetics
;
metabolism
;
Phosphorylation
;
drug effects
;
Protein Transport
;
drug effects
;
Rats
;
Signal Transduction
;
drug effects
;
Synoviocytes
;
drug effects
;
metabolism
;
Transcriptional Activation
;
drug effects
;
Triterpenes
;
chemistry
;
pharmacology
;
therapeutic use

Result Analysis
Print
Save
E-mail