1.Research progress on biological clock-targeting small-molecule compounds for intervention in metabolic diseases.
Acta Physiologica Sinica 2025;77(4):641-652
The circadian rhythm regulates the 24-hour physiological and behavioral cycles through endogenous molecular clocks governed by core clock genes via the transcription-translation feedback loop (TTFL). In mammals, the suprachiasmatic nucleus (SCN) serves as the central pacemaker, coordinating the timing of physiological processes throughout the body by regulating clock genes such as CLOCK, BMAL1, PER, and CRY. The molecular clocks of peripheral tissues and cells are synchronized by the SCN through TTFLs to regulate metabolism, immunity, and energy homeostasis. Numerous studies indicate that circadian rhythm disruption is closely related to obesity, type 2 diabetes, metabolic syndrome and other diseases, and the mechanism involves the dysregulation of glucose and lipid metabolism, abnormal insulin signaling and low-grade inflammation. In recent years, small-molecule compounds targeting the core clock components such as CRY, REV-ERB, and ROR have been identified and shown potential to modulate metabolic diseases by stabilizing or inhibiting the activity of key clock proteins. This review summarizes the mechanisms and advances in these compounds, and explores the challenges and future directions for their clinical translation, providing insights for chronotherapy-based metabolic disease interventions.
Humans
;
Metabolic Diseases/physiopathology*
;
Animals
;
Circadian Rhythm/physiology*
;
Biological Clocks/drug effects*
;
CLOCK Proteins/physiology*
;
Circadian Clocks/physiology*
;
Suprachiasmatic Nucleus/physiology*
2.Suprachiasmatic Nucleus Vasoactive Intestinal Peptide Neurons Mediate Light-induced Transient Forgetting.
Xiaoya SU ; Yikai TANG ; Yi ZHONG ; Yunlong LIU
Neuroscience Bulletin 2025;41(11):2025-2035
Our research reveals the critical role of the suprachiasmatic nucleus (SCN) vasoactive intestinal peptide (VIP) neurons in mediating light-induced transient forgetting. Acute exposure to bright light selectively impairs trace fear memory by activating VIP neurons in the SCN, as demonstrated by increased c-Fos expression and Ca2+ recording. This effect can be replicated and reversed through optogenetic and chemogenetic manipulations of SCN VIP neurons. Furthermore, we identify the SCN → PVT (paraventricular nucleus of the thalamus) VIP neuronal circuitry as essential in this process. These findings establish a novel role for SCN VIP neurons in modulating memory accessibility in response to environmental light cues, extending their known function beyond circadian regulation and revealing a mechanism for transient forgetting.
Animals
;
Vasoactive Intestinal Peptide/metabolism*
;
Male
;
Mice
;
Neurons/metabolism*
;
Suprachiasmatic Nucleus/physiology*
;
Light
;
Mice, Inbred C57BL
;
Memory/physiology*
;
Fear/physiology*
;
Suprachiasmatic Nucleus Neurons/metabolism*
;
Optogenetics
;
Proto-Oncogene Proteins c-fos/metabolism*
3.Basic science review on circadian rhythm biology and circadian sleep disorders.
Annals of the Academy of Medicine, Singapore 2008;37(8):662-668
The sleep-wake cycle displays a characteristic 24-hour periodicity, providing an opportunity to dissect the endogenous circadian clock through the study of aberrant behaviour. This article surveys the properties of circadian clocks, with emphasis on mammals. Information was obtained from searches of peer-reviewed literature in the PUBMED database. Features that are highlighted include the known molecular components of clocks, their entrainment by external time cues and the output pathways used by clocks to regulate metabolism and behaviour. A review of human circadian rhythm sleep disorders follows, including recent discoveries of their genetic basis. The article concludes with a discussion of future approaches to the study of human circadian biology and sleep-wake behaviour.
ARNTL Transcription Factors
;
Animals
;
Basic Helix-Loop-Helix Transcription Factors
;
physiology
;
CLOCK Proteins
;
Circadian Rhythm
;
genetics
;
physiology
;
Humans
;
Neurons, Afferent
;
physiology
;
Neurons, Efferent
;
physiology
;
Polymorphism, Single Nucleotide
;
Sleep Disorders, Circadian Rhythm
;
genetics
;
physiopathology
;
Suprachiasmatic Nucleus
;
cytology
;
physiology
;
Trans-Activators
;
physiology
4.Circadian rhythms and different photoresponses of Clock gene transcription in the rat suprachiasmatic nucleus and pineal gland.
Guo-Qing WANG ; Chun-Ling FU ; Jian-Xiang LI ; Yu-Zhen DU ; Jian TONG
Acta Physiologica Sinica 2006;58(4):359-364
The aim of this study was to observe and compare the endogenous circadian rhythm and photoresponse of Clock gene transcription in the suprachiasmatic nucleus (SCN) and pineal gland (PG) of rats. With free access to food and water in special darkrooms, Sprague-Dawley rats were housed under the light regime of constant darkness (DD) for 8 weeks (n=36) or 12 hour-light: 12 hour-dark cycle (LD) for 4 weeks (n=36), respectively. Then, their SCN and PG were dissected out every 4 h in a circadian day, 6 rats at each time (n=6). All animal treatments and sampling during the dark phases were conducted under red dim light (<0.1 lux). The total RNA was extracted from each sample and the semi-quantitative RT-PCR was used to determine the temporal mRNA changes of Clock gene in the SCN and PG at different circadian times (CT) or zeitgeber times (ZT). The grayness ratio of Clock/H3.3 bands was served as the relative estimation of Clock gene expression. The experimental data were analyzed by the Cosine method and the Clock Lab software to fit original results measured at 6 time points and to simulate a circadian rhythmic curve which was then examined for statistical difference by the amplitude F test. The main results are as follows: (1) The mRNA levels of Clock gene in the SCN under DD regime displayed the circadian oscillation (P<0.05). The endogenous rhythmic profiles of Clock gene transcription in the PG were similar to those in the SCN (P>0.05) throughout the day with the peak at the subjective night (CT15 in the SCN or CT18 in the PG) and the trough during the subjective day (CT3 in the SCN or CT6 in the PG). (2) Clock gene transcription in the SCN under LD cycle also showed the circadian oscillation (P<0.05), and the rhythmic profile was anti-phasic to that under DD condition (P<0.05). The amplitude and the mRNA level at the peak of Clock gene transcription in the SCN under LD were significantly increased compared with that under DD (P<0.05), while the value of corresponding rhythmic parameters in the PG under LD were remarkably decreased (P<0.05). (3) Under LD cycle, the circadian profiles of Clock gene transcription induced by light in the PG were quite different from those in the SCN (P<0.05). Their Clock transcription rhythms were anti-phasic, i.e., showing peaks at the light phase ZT10 in the SCN or at the dark time ZT17 in the PG and troughs during the dark time ZT22 in the SCN or during the light phase ZT5 in the PG. The findings of the present study indicate a synchronous endogenous nature of the Clock gene circadian transcriptions in the SCN and PG, and different roles of light regime in modulating the circadian transcriptions of Clock gene in these two central nuclei.
Animals
;
CLOCK Proteins
;
genetics
;
Circadian Rhythm
;
physiology
;
Male
;
Photoreceptor Cells, Vertebrate
;
physiology
;
Pineal Gland
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Suprachiasmatic Nucleus
;
physiology
;
Transcription, Genetic
5.Changes in orexin-A and neuropeptide Y expression in the hypothalamus of the fasted and high-fat diet fed rats.
Eun Sung PARK ; Seong Joon YI ; Jin Sang KIM ; Heungshik S LEE ; In Se LEE ; Je Kyung SEONG ; Hee Kyung JIN ; Yeo Sung YOON
Journal of Veterinary Science 2004;5(4):295-302
This study was aimed to investigate the changes of orexin-A (OXA) and neuropeptide Y (NPY) expression in the hypothalamus of the fasted and high-fat diet fed rats. For the experiments, the male Sprague-Dawley (SD) rats were used as the model of high-fat diet-induced obesity. The mean loss of body weight (MLBW) did not show the linear pattern during the fasting; from 24 h to 84 h of fastings, the MLBW was not significantly changed. The numbers of OXA-immunoreactive (IR) neurons were decreased at 84 h of fasting compared with those in other five fasting subgroups. The NPY immunoreactivities in the arcuate nucleus (ARC) and the suprachiasmatic nucleus (SCN) observed at 84 h of fasting were higher than that observed at 24 h of fasting. The number of OXA-IR neurons of the LHA (lateral hypothalamic area) in the high-fat (HF) diet fed group was more increased than that of the same area in the normal-fat (NF) diet fed group. The NPY immunoreactivities of the ARC and the SCN were higher in HF group than those observed in the same areas of NF group. Based on these results, it is noteworthy that the decrease of the body weight during the fast was not proportionate to the time-course, implicating a possible adaptation of the body for survival against starvation. The HF diet might activate the OXA and the NPY in the LHA to enhance food intake.
Adaptation, Physiological/physiology
;
Animals
;
Arcuate Nucleus/metabolism
;
Dietary Fats
;
Eating
;
Fasting/*physiology
;
Hypothalamic Area, Lateral/metabolism
;
Hypothalamus/*metabolism
;
Immunohistochemistry/veterinary
;
Intracellular Signaling Peptides and Proteins/*metabolism
;
Male
;
Neuropeptide Y/*metabolism
;
Neuropeptides/*metabolism
;
Obesity
;
Rats
;
Rats, Sprague-Dawley/physiology
;
Suprachiasmatic Nucleus/metabolism

Result Analysis
Print
Save
E-mail