1.In vivo antioxidant activity of rabbiteye blueberry (Vaccinium ashei cv. 'Brightwell') anthocyanin extracts.
Jing WANG ; Xingyu ZHAO ; Jiawei ZHENG ; Daniela D HERRERA-BALANDRANO ; Xiaoxiao ZHANG ; Wuyang HUANG ; Zhongquan SUI
Journal of Zhejiang University. Science. B 2023;24(7):602-616
Blueberries are rich in phenolic compounds including anthocyanins which are closely related to biological health functions. The purpose of this study was to investigate the antioxidant activity of blueberry anthocyanins extracted from 'Brightwell' rabbiteye blueberries in mice. After one week of adaptation, C57BL/6J healthy male mice were divided into different groups that were administered with 100, 400, or 800 mg/kg blueberry anthocyanin extract (BAE), and sacrificed at different time points (0.1, 0.5, 1, 2, 4, 8, or 12 h). The plasma, eyeball, intestine, liver, and adipose tissues were collected to compare their antioxidant activity, including total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity and glutathione-peroxidase (GSH-PX/GPX) content, and the oxidative stress marker malondialdehyde (MDA) level. The results showed that blueberry anthocyanins had positive concentration-dependent antioxidant activity in vivo. The greater the concentration of BAE, the higher the T-AOC value, but the lower the MDA level. The enzyme activity of SOD, the content of GSH-PX, and messenger RNA (mRNA) levels of Cu,Zn-SOD, Mn-SOD, and GPX all confirmed that BAE played an antioxidant role after digestion in mice by improving their antioxidant defense. The in vivo antioxidant activity of BAE indicated that blueberry anthocyanins could be developed into functional foods or nutraceuticals with the aim of preventing or treating oxidative stress-related diseases.
Male
;
Mice
;
Animals
;
Antioxidants/pharmacology*
;
Blueberry Plants
;
Anthocyanins/pharmacology*
;
Mice, Inbred C57BL
;
Superoxide Dismutase
;
Plant Extracts/pharmacology*
;
Superoxide Dismutase-1
2.Ginsenoside-Rg1 combined with a conditioned medium from induced neuron-like hUCMSCs alleviated the apoptosis in a cell model of ALS through regulating the NF-κB/Bcl-2 pathway.
Yu HUANG ; Huili YANG ; Biying YANG ; Yu ZHENG ; Xiaomei HOU ; Guiling CHEN ; Wenqi ZHANG ; Xiang ZENG ; Baoxin DU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(7):540-550
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting both upper and lower motor neurons in the brain and spinal cord. One important aspect of ALS pathogenesis is superoxide dismutase 1 (SOD1) mutant-mediated mitochondrial toxicity, leading to apoptosis in neurons. This study aimed to evaluate the neural protective synergistic effects of ginsenosides Rg1 (G-Rg1) and conditioned medium (CM) on a mutational SOD1 cell model, and to explore the underlying mechanisms. We found that the contents of nerve growth factor, glial cell line-derived neurotrophic factor, and brain-derived neurotrophic factor significantly increased in CM after human umbilical cord mesenchymal stem cells (hUCMSCs) were exposed to neuron differentiation reagents for seven days. CM or G-Rg1 decreased the apoptotic rate of SOD1G93A-NSC34 cells to a certain extent, but their combination brought about the least apoptosis, compared with CM or G-Rg1 alone. Further research showed that the anti-apoptotic protein Bcl-2 was upregulated in all the treatment groups. Proteins associated with mitochondrial apoptotic pathways, such as Bax, caspase 9 (Cas-9), and cytochrome c (Cyt c), were downregulated. Furthermore, CM or G-Rg1 also inhibited the activation of the nuclear factor-kappa B (NF-κB) signaling pathway by reducing the phosphorylation of p65 and IκBα. CM/G-Rg1 or their combination also reduced the apoptotic rate induced by betulinic acid (BetA), an agonist of the NF-κB signaling pathway. In summary, the combination of CM and G-Rg1 effectively reduced the apoptosis of SOD1G93A-NSC34 cells through suppressing the NF-κB/Bcl-2 signaling pathway (Fig. 1 is a graphical representation of the abstract).
Humans
;
NF-kappa B/metabolism*
;
Ginsenosides/pharmacology*
;
Amyotrophic Lateral Sclerosis/genetics*
;
Culture Media, Conditioned/pharmacology*
;
Superoxide Dismutase-1
;
Neurodegenerative Diseases
;
Neurons/metabolism*
;
Apoptosis
3.Mechanisms mediating the inhibitory effects of quercetin against phthalates-induced testicular oxidative damage in rats.
Lilan LIU ; Ruya DENG ; Wenjin ZHOU ; Min LIN ; Lingzi XIA ; Haitao GAO
Journal of Southern Medical University 2023;43(4):577-584
OBJECTIVE:
To explore the mechanism underlying the inhibitory effect of quercetin against testicular oxidative damage induced by a mixture of 3 commonly used phthalates (MPEs) in rats.
METHODS:
Forty male Sprague-Dawley rats were randomly divided into control group, MPEs exposure group, and MPEs with low-, median- and high-dose quercetin treatment groups. For MPEs exposure, the rats were subjected to intragastric administration of MPEs at the daily dose of 900 mg/kg for 30 consecutive days; Quercetin treatments were administered in the same manner at the daily dose of 10, 30, and 90 mg/kg. After the treatments, serum levels of testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH), and testicular malondialdeyhde (MDA), catalase (CAT) and superoxide dismutase (SOD) were detected, and testicular pathologies of the rats were observed with HE staining. The expressions of nuclear factor-E2-related factor 2 (Nrf2), Kelch-like ECH2 associated protein 1 (Keap1) and heme oxygenase 1 (HO-1) in the testis were detected using immunofluorescence assay and Western blotting.
RESULTS:
Compared with the control group, the rats with MPEs exposure showed significant reductions of the anogenital distance, weight of the testis and epididymis, and the coefficients of the testis and epididymis with lowered serum testosterone, LH and FSH levels (P < 0.05). Testicular histological examination revealed atrophy of the seminiferous tubules, spermatogenic arrest, and hyperplasia of the Leydig cells in MPEs-exposed rats. MPEs exposure also caused significant increments of testicular Nrf2, MDA, SOD, CAT and HO-1 expressions and lowered testicular Keap1 expression (P < 0.05). Treatment with quercetin at the median and high doses significantly ameliorated the pathological changes induced by MPEs exposure (P < 0.05).
CONCLUSION
Quercetin treatment inhibits MPEs-induced oxidative testicular damage in rats possibly by direct scavenging of free radicals to lower testicular oxidative stress and restore the regulation of the Nrf2 signaling pathway.
Rats
;
Male
;
Animals
;
Testis
;
Quercetin/pharmacology*
;
Rats, Sprague-Dawley
;
NF-E2-Related Factor 2/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Oxidative Stress
;
Testosterone/pharmacology*
;
Superoxide Dismutase/metabolism*
;
Follicle Stimulating Hormone
;
Luteinizing Hormone
4.Neuroprotective effect of ginsenoside Re on drosophila model of Parkinson's disease.
Yan XU ; Xue MENG ; Wen-Xue ZHAO ; Dong-Guang LIU ; Jian-Guo ZHU ; Ru YAO ; Jing-Chun YAO ; Gui-Min ZHANG
China Journal of Chinese Materia Medica 2023;48(7):1927-1935
This study aims to explore the neuroprotective mechanism of ginsenoside Re(GS-Re) on drosophila model of Parkinson's disease(PD) induced by rotenone(Rot). To be specific, Rot was used to induce PD in drosophilas. Then the drosophilas were grouped and respectively treated(GS-Re: 0.1, 0.4, 1.6 mmol·L~(-1); L-dopa: 80 μmol·L~(-1)). Life span and crawling ability of drosophilas were determined. The brain antioxidant activity [content of catalase(CAT), malondialdehyde(MDA), reactive oxygen species(ROS), superoxide dismutase(SOD)], dopamine(DA) content, and mitochondrial function [content of adenosine triphosphate(ATP), NADH:ubiquinone oxidoreductase subunit B8(NDUFB8) Ⅰ activity, succinate dehydrogenase complex, subunit B(SDHB) Ⅱ activity] were detected by enzyme-linked immunosorbent assay(ELISA). The number of DA neurons in the brains of drosophilas was measured with the immunofluorescence method. The levels of NDUFB8 Ⅰ, SDHB Ⅱ, cytochrome C(Cyt C), nuclear factor-E2-related factor 2(Nrf2), heme oxygenase-1(HO-1), B-cell lymphoma/leukemia 2(Bcl-2)/Bcl-2-assaciated X protein(Bax), and cleaved caspase-3/caspase-3 in the brain were detected by Western blot. The results showed that model group [475 μmol·L~(-1) Rot(IC_(50))] demonstrated significantly low survival rate, obvious dyskinesia, small number of neurons and low DA content in the brain, high ROS level and MDA content, low content of SOD and CAT, significantly low ATP content, NDUFB8 Ⅰ activity, and SDHB Ⅱ activity, significantly low expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax, large amount of Cyt C released from mitochondria to cytoplasm, low nuclear transfer of Nrf2, and significantly high expression of cleaved caspase-3/caspase-3 compared with the control group. GS-Re(0.1, 0.4, and 1.6 mmol·L~(-1)) significantly improved the survival rate of PD drosophilas, alleviated the dyskinesia, increased DA content, reduced the loss of DA neurons, ROS level, and MDA content in brain, improved content of SOD and CAT and antioxidant activity in brain, maintained mitochondrial homeostasis(significantly increased ATP content and activity of NDUFB8 Ⅰ and SDHB Ⅱ, significantly up-regulated expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax), significantly reduced the expression of Cyt C, increased the nuclear transfer of Nrf2, and down-regulated the expression of cleaved caspase-3/caspase-3. In conclusion, GS-Re can significantly relieve the Rot-induced cerebral neurotoxicity in drosophilas. The mechanism may be that GS-Re activates Keap1-Nrf2-ARE signaling pathway by maintaining mitochondrial homeostasis, improves antioxidant capacity of brain neurons, then inhibits mitochondria-mediated caspase-3 signaling pathway, and the apoptosis of neuronal cells, thereby exerting the neuroprotective effect.
Animals
;
Reactive Oxygen Species/metabolism*
;
Antioxidants/pharmacology*
;
Oxidative Stress
;
NF-E2-Related Factor 2/metabolism*
;
Caspase 3/metabolism*
;
Parkinson Disease/genetics*
;
bcl-2-Associated X Protein/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Drosophila/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
;
Superoxide Dismutase/metabolism*
;
Adenosine Triphosphate/pharmacology*
5.Total triterpenes of Euphorbium alleviates rheumatoid arthritis via Nrf2/HO-1/GPX4 pathway.
Mao-Jie ZHOU ; Wei TAN ; Ha-Mu-la-Ti HASIMU ; Lei XU ; Zheng-Yi GU ; Jun ZHAO
China Journal of Chinese Materia Medica 2023;48(18):4834-4842
This study aims to investigate the effect and mechanism of total triterpenes of Euphorbium in treating rheumatoid arthritis(RA). The rat model of RA was established with Freund's complete adjuvant(FCA). Male rats were randomly assigned into control, model, Tripterygium glycosides(7.5 mg·kg~(-1)), and low-, medium-, and high-dose total triterpenes of Euphorbium(32, 64, and 128 mg·kg~(-1), respectively) groups, with 10 rats in each group. In other groups except the control group, 0.2 mL FCA was injected into the right hind toe. Rats in the intervention groups were administrated with corresponding drugs by gavage, and the control group and the model group with the same volume of 0.5% CMC-Na solution once a day. During the treatment period, the swelling degree of the hind paw was measured and the arthritis was scored until day 30. At the end of drug administration, the pathological changes of the joint tissue were observed by hematoxylin-eosin staining. The content of malondialdehyde(MDA), glutathione(GSH), and Fe~(2+) and the activity of superoxide dismutase(SOD) in the joint tissue were measured by biochemical colorimetry. RT-PCR was performed to determine the mRNA levels of nuclear factor erythroid 2-related factor 2(Nrf2), glutathione peroxidase 4(GPX4), and acyl-CoA synthetase long chain family member 4(ACSL4) in the joint tissue. Western blot was employed to determine the protein levels of Nrf2, Kelch-like ECH-associated protein 1(Keap1), heme oxygenase-1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), SOD2, GPX4, and ACSL4 in the joint tissue. The results showed that the treatment with Tripterygium glycosides(7.5 mg·kg~(-1)) and total triterpenes of Euphorbium(32, 64, and 128 mg·kg~(-1)) alleviated the swelling degree of bilateral hind limbs, decreased the arthritis score, reduced joint tissue lesions and the content of MDA and Fe~(2+) in the joint tissue, and increased GSH content and SOD activity. Furthermore, the interventions up-regulated the protein and mRNA levels of Nrf2 and GPX4, down-regulated the protein and mRNA levels of ACSL4, and up-regulated the protein levels of Keap1, NQO1, HO-1, and SOD2 in the Nrf2/HO-1/GPX4. In summary, the total triterpenes of Euphorbium can treat RA by inhibiting lipid peroxidation and abnormal ferroptosis, which may involve the Nrf2/HO-1/GPX4 signaling pathway.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
NF-E2-Related Factor 2/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Triterpenes/pharmacology*
;
Oxidative Stress
;
Arthritis, Rheumatoid/genetics*
;
Glutathione
;
Superoxide Dismutase/metabolism*
;
Glycosides/pharmacology*
;
RNA, Messenger/metabolism*
6.Acacetin protects rats from cerebral ischemia-reperfusion injury by regulating TLR4/NLRP3 signaling pathway.
Lan-Ming LIN ; Zheng-Yu SONG ; Jin HU
China Journal of Chinese Materia Medica 2023;48(22):6107-6114
This study aims to investigate the mechanism of acacetin in protecting rats from cerebral ischemia-reperfusion injury via the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. Wistar rats were randomized into sham, model, low-and high-dose acacetin, and nimodipine groups, with 10 rats in each group. The rat model of middle cerebral artery occlusion(MCAO) was established with the improved suture method in other groups except the sham group. The neurological deficit score and cerebral infarction volume of each group were evaluated 24 h after modeling. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interleukin-1β(IL-1β), IL-6, tumor necrosis factor-α(TNF-α), malondialdehyde(MDA), supe-roxide dismutase(SOD), and glutathione(GSH). Western blot was employed to determine the expression levels of B-cell lymphonoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and TLR4/NLRP3 signaling pathway-related proteins(TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β) in the rat brain tissue. Hematoxylin-eosin(HE) staining was employed to reveal the histopathological changes in the ischemic area. Compared with the sham group, the modeling of MCAO increased the neurological deficit score and cerebral infarction volume, elevated the IL-1β, IL-6, TNF-α, and MDA levels and lowered the SOD and GSH levels in the brain tissue(P<0.05). Compared with the MCAO model group, low-and high-dose acacetin and nimodipine decreased the neurological deficit score and cerebral infarction volume, lowered the IL-1β, IL-6, TNF-α, and MDA levels and elevated the SOD and GSH levels in the brain tissue(P<0.05). Compared with the sham group, the model group showed up-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β and down-regulated protein level of Bcl-2 in the brain tissue(P<0.05). Compared with the MCAO model group, the acacetin and nimodipine groups showed down-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β and up-regulated protein level of Bcl-2 in the brain tissue(P<0.05). In conclusion, acacetin regulates the TLR4/NLRP3 signaling pathway to inhibit neuroinflammatory response and oxidative stress, thus exerting the protective effect on cerebral ischemia-reperfusion injury in rats.
Rats
;
Animals
;
NF-kappa B/metabolism*
;
bcl-2-Associated X Protein
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Rats, Sprague-Dawley
;
Caspase 1/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Nimodipine/pharmacology*
;
Interleukin-6
;
Rats, Wistar
;
Signal Transduction
;
Infarction, Middle Cerebral Artery
;
Reperfusion Injury/prevention & control*
;
Superoxide Dismutase/metabolism*
7.Protective effect and mechanism of Astragalus membranaceus and Angelica sinensis compatibility against triptolide-induced hepatotoxicity by regulating Keap1/Nrf2/PGC-1α.
Wei-Zheng ZHANG ; Xiao-Ming QI ; Yu-Qin ZUO ; Qing-Shan LI
China Journal of Chinese Materia Medica 2023;48(23):6378-6386
This paper aims to investigate the protective effect and mechanism of Astragalus membranaceus and Angelica sinensis before and after compatibility against triptolide(TP)-induced hepatotoxicity. The experiment was divided into a blank group, model group, Astragalus membranaceus group, Angelica sinensis group, and compatibility groups with Astragalus membranaceus/Angelica sinensis ratio of 1∶1, 2∶1, and 5∶1. TP-induced hepatotoxicity model was established, and corresponding drug intervention was carried out. The levels of alanine transaminase(ALT), aspartate transaminase(AST), and alkaline phosphatase(ALP) in serum were detected. Pathological injuries of livers were detected by hematoxylin-eosin(HE) staining. The levels of malondialdehyde(MDA), superoxide dismutase(SOD), glutathione peroxidase(GSH-Px), and reduced glutathione(GSH) in the liver were measured. Wes-tern blot method was used to detect the expression of nuclear factor erythroid 2-related factor 2(Nrf2), Kelch-like ECH-associated protein 1(Keap1), peroxisome proliferator-activated receptor gamma, coactivator-1 alpha(PGC-1α), heme oxygenase-1(HO-1), and NAD(P)H quinone dehydrogenase 1(NQO1) in livers. Immunofluorescence was used to detect the expression of Nrf2 and PGC-1α in livers. The results indicated that Astragalus membranaceus/Angelica sinensis ratio of 2∶1 and 5∶1 could significantly reduce the levels of serum AST, ALT, and ALP, improve the pathological damage of liver tissue, increase the levels of GSH and GSH-Px, and reduce the content of MDA in liver tissue. Astragalus membranaceus/Angelica sinensis ratio of 1∶1 and 2∶1 could significantly improve the level of SOD. Astragalus membranaceus and Angelica sinensis before and after compatibility significantly increased the protein expression of HO-1 and NQO1, improved the protein expression of Nrf2 and PGC-1α, and decreased the protein expression of Keap1 in liver tissue. The above results confirmed that the compatibility of Astragalus membranaceus and Angelica sinensis had antioxidant effects by re-gulating Keap1/Nrf2/PGC-1α, and the Astragalus membranaceus/Angelica sinensis ratio of 2∶1 and 5∶1 had stronger antioxidant effect and significantly reduced TP-induced hepatoto-xicity.
Humans
;
Astragalus propinquus
;
Angelica sinensis
;
NF-E2-Related Factor 2/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Antioxidants/pharmacology*
;
Chemical and Drug Induced Liver Injury/prevention & control*
;
Superoxide Dismutase/metabolism*
;
Oxidative Stress
;
Diterpenes
;
Epoxy Compounds
;
Phenanthrenes
8.Effect and mechanism of Poria cocos polysaccharides on myocardial cell apoptosis in rats with myocardial ischemia-reperfusion injury by regulating Rho-ROCK signaling pathway.
Jun XIE ; Yuan-Yuan WANG ; Ju-Xin LI ; Feng-Min GAO
China Journal of Chinese Materia Medica 2023;48(23):6434-6441
This study aimed to investigate the effect and underlying mechanism of Poria cocos polysaccharides(PCP) on myocardial cell apoptosis in the rat model of myocardial ischemia-reperfusion injury(MI/RI). Male SPF-grade SD rats were randomly divided into a sham group(saline), a model group(saline), low-and high-dose PCP groups(100 and 200 mg·kg~(-1)), and a fasudil group(10 mg·kg~(-1)), with 16 rats in each group. Except for the sham group, the other four groups underwent left anterior descending coronary artery ligation for 30 min followed by reperfusion for 2 h to establish the MI/RI model. The myocardial infarct area was assessed by TTC staining. Histological changes were observed through HE staining. Myocardial cell apoptosis was evaluated using TUNEL staining. Serum lactate dehydrogenase(LDH), creatine kinase MB(CK-MB), interleukin-1β(IL-1β) and IL-18 levels, myocardial superoxide dismutase(SOD) activity and malondialdehyde(MDA) levels were detected by ELISA. Protein expression of B-cell lymphoma 2(Bcl-2), Bcl-2 associated X protein(Bax), cleaved caspase-3, Ras homolog gene A(RhoA), myosin phosphatase target subunit 1(MYPT-1), phosphorylated MYPT-1(p-MYPT-1), and Rho-associated coiled-coil forming kinase 1(ROCK 1) were measured by Western blot. Pathological staining of myocardial tissue revealed that in the model group, there was focal necrosis of myocardial tissue, myocardial cell swelling, unclear boundaries, and neutrophil infiltration. These pathological changes were alleviated in the low-and high-dose PCP groups and the fasudil group. Compared with the model group, the low-and high-dose PCP groups and the fasudil group showed significantly reduced myocardial infarct area and myocardial cell apoptosis rate. Compared with the sham group, the model group exhibited elevated serum LDH, CK-MB, IL-1β and IL-18 levels, increased MDA levels, relative protein expression of Bax, cleaved caspase-3, RhoA, ROCK1 and p-MYPT-1, and decreased myocardial SOD levels and Bcl-2 protein expression. Compared with the model group, the PCP groups and the fasudil group showed lowered serum LDH, CK-MB, IL-1β and IL-18 levels, decreased MDA levels, relative protein expression of Bax, cleaved caspase-3, RhoA, ROCK1 and p-MYPT-1, and increased myocardial SOD levels and Bcl-2 protein expression. PCP exhibited a certain preventive effect on myocardial tissue pathological damage and myocardial cell apoptosis in MI/RI rats, possibly related to the inhibition of the Rho-ROCK signaling pathway activation, thereby reducing oxidative stress and inflammatory responses.
Rats
;
Male
;
Animals
;
Myocardial Reperfusion Injury/drug therapy*
;
bcl-2-Associated X Protein/metabolism*
;
Rats, Sprague-Dawley
;
Caspase 3/metabolism*
;
Interleukin-18
;
Wolfiporia
;
Signal Transduction
;
Myocardial Infarction/drug therapy*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Creatine Kinase, MB Form
;
Apoptosis
;
Polysaccharides/pharmacology*
;
Superoxide Dismutase/metabolism*
;
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives*
9.Polydatin improves intestinal barrier injury after traumatic brain injury in rats by reducing oxidative stress and inflammatory response via activating SIRT1-mediated deacetylation of SOD2 and HMGB1.
Na QIN ; Lin HUANG ; Rui DONG ; Fen LI ; Xu Heng TANG ; Zhen Hua ZENG ; Xing Min WANG ; Hong YANG
Journal of Southern Medical University 2022;42(1):93-100
OBJECTIVE:
To investigate the protective effect against intestinal mucosal injury in rats following traumatic brain injury (TBI) and explore the underlying mechanism.
METHODS:
SD rat models of TBI were established by fluid percussion injury (FPI), and the specimens were collected at 12, 24, 48, and 72 h after TBI. Another 15 rats were randomly divided into shamoperated group (n=5), TBI with saline treatment (TBI+NS) group (n=5), and TBI with PD treatment (TBI+PD) group (treated with 30 mg/kg PD after TBI; n=5). Body weight gain and fecal water content of the rats were recorded, and after the treatments, the histopathology of the jejunum was observed, and the levels of D-lactic acid (D-LAC), diamine oxidase (DAO), ZO-1, claudin-5, and reactive oxygen species (ROS) were detected. Lipid peroxide (LPO) and superoxide dismutase (SOD) 2 content, jejunal pro-inflammatory factors (IL-6, IL-1β, and TNF- α), Sirt1 activity, SOD2 and HMGB1 acetylation level were also determined after the treatments.
RESULTS:
The rats showed significantly decreased body weight and fecal water content and progressively increased serum levels of D-LAC and DAO after TBI (P < 0.05) with obvious jejunal injury, significantly decreased expression levels of ZO-1 and claudin-5, lowered SOD2 and Sirt1 activity (P < 0.05), increased expression levels of LPO, ROS, and pro-inflammatory cytokines, and enhanced SOD2 and HMGB1 acetylation levels (P < 0.05). Compared with TBI+NS group, the rats in TBI+PD group showed obvious body weight regain, increased fecal water content, reduced jejunal pathologies, decreased D-LAC and DAO levels (P < 0.05), increased ZO-1, claudin-5, SOD2 expression levels and Sirt1 activity, and significantly decreased ROS, LPO, pro-inflammatory cytokines, and acetylation levels of SOD2 and HMGB1 (P < 0.05).
CONCLUSION
PD alleviates oxidative stress and inflammatory response by activating Sirt1-mediated deacetylation of SOD2 and HMGB1 to improve intestinal mucosal injury in TBI rats.
Animals
;
Brain Injuries, Traumatic
;
Glucosides/pharmacology*
;
HMGB1 Protein/metabolism*
;
Oxidative Stress
;
Rats
;
Rats, Sprague-Dawley
;
Sirtuin 1/metabolism*
;
Stilbenes/pharmacology*
;
Superoxide Dismutase/metabolism*
10.Effects of early life PM2.5 exposure on prefrontal cortex of offspring male rats.
Xiao-Tian LIANG ; Chun-Lei HAN ; Ben-Cheng LIN ; Yue SHI ; Xiao-Qian XIE ; Kang LI ; Zhu-Ge XI
Chinese Journal of Applied Physiology 2022;38(1):1-5
Objective: To investigate the effects of PM2.5 exposure at different stages of early life on the prefrontal cortex of offspring rats. Methods: Twelve pregnant SD rats were randomly divided into four groups: Control group (CG), Maternal pregnancy exposure group (MG), Early postnatal exposure group (EP) and Perinatal period exposure group (PP), 3 rats in each group. The pregnant and offspring rats were exposed to clean air or 8-fold concentrated PM2.5. MG was exposed from gestational day (GD) 1 to GD21. EP was exposed from postnatal day (PND) 1 to PND21, and PP was exposed from GD1 to PND21. After exposure, the prefrontal cortex of 6 offspring rats in each group was analyzed. HE staining was used to observe the pathological damage in the prefrontal cortex. ELISA was employed to detect neuroinflammatory factors, and HPLC/MSC was applied to determine neurotransmitter content. Western blot and colorimetry were applied for detecting astrocyte markers and oxidative stress markers, respectively. Results: Compared with MG and CG, the pathological changes of prefrontal cortex in PP and EP were more obvious. Compared with MG and CG, the neuroinflammatory factors (IL-1, IL-6, TNF-α) in PP and EP were increased significantly (P<0.01), the level of MT were decreased significantly (P<0.05), and the level of oxytocin (OT) showed a downward trend; the level of neurotransmitter ACh was also increased significantly (P<0.01). Compared with MG and CG, the GFAP level of PP and EP showed an upward trend, the level of oxidative stress index SOD in PP and EP was decreased significantly (P<0.01), and the level of ROS was increased significantly (P<0.01). Compared with the offspring rats of CG and MG, the CAT level of PP was decreased significantly (P<0.01, P<0.05). Compared with the offspring rats of CG, the CAT level of EP was decreased significantly (P<0.05). There was no significant difference in IL-1, IL-6, TNF-α, MT, OT, ACh, GFAP, SOD, ROS and CAT levels between PP and EP, or MG and CG. Conclusion: PM2.5 exposure in early life has adverse effects on the prefrontal cortex of offspring male rats, and early birth exposure may be more sensitive.
Animals
;
Female
;
Interleukin-1/pharmacology*
;
Interleukin-6
;
Male
;
Neurotransmitter Agents
;
Particulate Matter/toxicity*
;
Prefrontal Cortex
;
Pregnancy
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
Superoxide Dismutase
;
Tumor Necrosis Factor-alpha/pharmacology*

Result Analysis
Print
Save
E-mail