1.Effect of electroacupuncture on denervated skeletal muscle atrophy in rats based on p38 MAPK signaling pathway.
Wei QIU ; Chenglin TANG ; Cai LIAO ; Yunhao YANG ; Yan YANG ; Kang YANG ; Wanchun PENG
Chinese Acupuncture & Moxibustion 2025;45(1):61-70
OBJECTIVE:
To assess the impacts of electroacupuncture (EA) on the gait, oxidative stress, inflammatory reaction, and protein degradation in the rats of denervated skeletal muscle atrophy, and explore the potential mechanism of EA for alleviating denervated skeletal muscle atrophy.
METHODS:
Forty male SD rats, 8 weeks old, were randomly assigned to a sham-surgery group, a model group, an EA group, and a p38 MAPK inhibitor group, with 10 rats in each group. The right sciatic nerve was transected to establish a rat model of denervated skeletal muscle atrophy in the model group, the EA group and the p38 MAPK inhibitor group. In the sham-surgery group, the nerve was exposed without transection. One day after successful modeling, the rats in the EA group received EA at "Huantiao" (GB30) and "Zusanli" (ST36) on the right side, using a continuous wave with a frequency of 2 Hz and current intensity of 1 mA, for 15 min in each session, EA was delivered once a day, 6 times a week. In the p38 MAPK inhibitor group, the rats received the intraperitoneal injection with SB203580 (5 mg/kg), once a day, 6 times a week. The intervention was composed of 3 weeks in each group. After the intervention completion, the CatWalk XT 10.6 animal gait analysis system was used to record the gait parameters of rats. The wet weight ratio of the gastrocnemius muscle was calculated after the sample collected. Using HE staining, the fiber morphology and cross-sectional area of the gastrocnemius muscle were observed; ELISA was employed to measure the content of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α in the gastrocnemius muscle; the biochemical hydroxyamine method was adopted to detect the content of superoxide dismutase (SOD) and malondialdehyde (MDA) in the gastrocnemius muscle; with immunohistochemistry and Western blot used, the expression of p38 mitogen-activated protein kinase (p38 MAPK), phosphorylated (p)-p38 MAPK, muscle atrophy F-box gene (Atrogin-1), muscle RING finger 1 (Murf-1), nuclear factor E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) was detected in the gastrocnemius muscle.
RESULTS:
Compared to the sham-surgery group, in the model group, the standing duration, the swing time and the step cycle were increased (P<0.001), the footprint area of the maximum contact time, the print area, the average intensity of the maximum contact time, the average intensity, the swing speed, and the step length were decreased (P<0.001); the wet weight ratio of gastrocnemius muscle and fiber cross-sectional area were reduced (P<0.001); the content of IL-6, IL-1β, TNF-α and MDA in gastrocnemius muscle elevated (P<0.001), and that of SOD reduced (P<0.001); the positive and protein expression of p-p38 MAPK, Atrogin-1 and Murf-1 elevated (P<0.001) and that of Nrf2 and HO-1 dropped (P<0.001). When compared with the model group, in the EA group and the p38 MAPK inhibitor group, the standing duration, the swing time and the step cycle decreased (P<0.01), the footprint area of the maximum contact time, the print area, the average intensity of the maximum contact time, the average intensity, the swing speed, and the step length increased (P<0.01); the wet weight ratio of gastrocnemius muscle and fiber cross-sectional area were improved (P<0.01, P<0.05); the content of IL-6, IL-1β, TNF-α and MDA in gastrocnemius muscle dropped (P<0.05, P<0.01), and that of SOD elevated (P<0.01, P<0.05); the positive and protein expression of p-p38 MAPK, Atrogin-1 and Murf-1 dropped (P<0.01, P<0.05) and that of Nrf2 and HO-1 increased (P<0.01, P<0.05).
CONCLUSION
Electroacupuncture may alleviate skeletal muscle atrophy in denervated skeletal muscle atrophy rats by mediating the p38 MAPK activity, thereby suppressing oxidative stress, inflammatory reaction, and protein degradation.
Animals
;
Electroacupuncture
;
Male
;
Rats
;
p38 Mitogen-Activated Protein Kinases/genetics*
;
Rats, Sprague-Dawley
;
Muscular Atrophy/metabolism*
;
Muscle, Skeletal/metabolism*
;
Humans
;
Signal Transduction
;
Superoxide Dismutase/genetics*
;
Tumor Necrosis Factor-alpha/genetics*
;
Oxidative Stress
;
MAP Kinase Signaling System
;
Acupuncture Points
2.Mechanism of the pretreatment with electroacupuncture of "biaoben acupoint combination" for regulating cardiomyocyte mitochondrial fission in the rats of myocardial ischemia-reperfusion injury.
Yanlin ZHANG ; Song WU ; Qianru GUO ; Yuntao YU ; Sunyi WANG ; Yuqi WEI ; Xiaoman WAN ; Zhen LU ; Xiaoru HE
Chinese Acupuncture & Moxibustion 2025;45(3):335-344
OBJECTIVE:
To observe the effect of electroacupuncture (EA) pretreatment of "biaoben acupoint combination" on cardiomyocyte mitochondrial fission in the rats with myocardial ischemia-reperfusion injury (MIRI) and explore its mechanism.
METHODS:
Fifty male SD rats were randomly divided into a sham-operation group, a model group, an EA pretreatment group, an EA pretreatment + Compound C group and an EA pretreatment+ML385 group, 10 rats in each group. In the EA pretreatment, the EA pretreatment + Compound C group and the EA pretreatment+ML385 group, EA was delivered at bilateral "Neiguan" (PC6), "Zusanli" (ST36) and "Guanyuan" (CV4) for 20 min, with continuous wave and 2 Hz of frequency, 1 mA of current, once daily for consecutive 7 days. On day 8, in the EA pretreatment + Compound C group and the EA pretreatment+ML385 group, 30 min before model preparation, the intraperitoneal injection with Compound C (0.3 mg/kg) and ML385 (30 mg/kg) was administered respectively. Except in the sham-operation group, the ligation of the left anterior descending coronary artery was performed to prepare MIRI rat model in the rest groups. In the sham-operation group, the thread was not ligated. After modeling, the content of reactive oxygen species (ROS) in the ischemic area was measured by flow cytometry, superoxide dismutase (SOD) was detected using xanthine oxidase method, and malondialdelyde (MDA) was detected using thiobarbituric acid (TBA) chromatometry. The morphology of myocardial tissue in the ischemic area was observed with HE staining, and the mitochondria ultrastructure of cardiomyocytes observed under transmission electron microscopy. Using immunofluorescence analysis, the positive expression of mitochondrial fission factor (MFF), mitochondrial fission 1 protein antibody (Fis1) and dynamin-related protein 1 (Drp1) was detected; and with immunohistochemical method used, the protein expression of adenosine monophosphate-activated protein kinase (AMPK), nuclear factor E2-associated factor2 (Nrf2) and Drp1 in the ischemic area was detected.
RESULTS:
Compared with the sham-operation group, the content of ROS and MDA in the myocardial tissue of the ischemic area, and the positive expression of MFF, Fis1 and Drp1 increased in the model group (P<0.01); the content of SOD and the protein expression of AMRK and Nrf2 decreased (P<0.01), and the protein expression of Drp1 elevated (P<0.01). Compared with the model group, the content of ROS and MDA in the myocardial tissue of the ischemic area, and the positive expression of MFF, Fis1 and Drp1 were dropped in the EA pretreatment group (P<0.01); the content of SOD and the protein expression of AMRK and Nrf2 rose (P<0.01), and the protein expression of Drp1 declined (P<0.01); and in the EA pretreatment+Compound C group and the EA pretreatment+ML385 group, the positive expression of MFF, Fis1 and Drp1, and the protein expression of Drp1 were all reduced (P<0.01). When compared with the EA pretreatment + Compound C group and the EA pretreatment+ML385 group, the content of ROS and MDA in the myocardial tissue of the ischemic area, and the positive expression of MFF, Fis1 and Drp1 were dropped in the EA pretreatment group (P<0.01); the content of SOD and the protein expression of AMRK and Nrf2 rose (P<0.01, P<0.05), and the protein expression of Drp1 decreased (P<0.05). In comparison with the model group, the EA pretreatment+Compound C group and the EA pretreatment+ML385 group, the cardiac muscle fiber rupture, cell swelling and mitochondrial disorders were obviously alleviated in the EA pretreatment group. The morphological changes were similar among the model group, the EA pretreatment+Compound C group and the EA pretreatment+ML385 group.
CONCLUSION
Electroacupuncture pretreatment of "biaoben acupoint combination" attenuates myocardial injury in MIRI rats, probably through promoting the phosphorylation of AMPK and Nrf2, inhibiting the excessive mitochondrial fission induced by Drp1, and reducing mitochondrial dysfunction caused by mitochondrial fragmentation and vacuolation.
Animals
;
Electroacupuncture
;
Male
;
Rats, Sprague-Dawley
;
Myocardial Reperfusion Injury/physiopathology*
;
Myocytes, Cardiac/cytology*
;
Rats
;
Acupuncture Points
;
Mitochondrial Dynamics
;
Humans
;
Reactive Oxygen Species/metabolism*
;
NF-E2-Related Factor 2/genetics*
;
Superoxide Dismutase/metabolism*
3.Effects of electroacupuncture with different frequencies on spermatogenesis and oxidative stress in oligoasthenospermia rats.
Wen WANG ; Ling HAN ; Yichun LIANG ; Shulin LIANG ; Zhan QIN ; Liguo GENG ; Chaoba HE ; Ting HUANG ; Shaoying YUAN
Chinese Acupuncture & Moxibustion 2025;45(4):495-504
OBJECTIVE:
To observe the effects of electroacupuncture (EA) with different frequencies on spermatogenic function, testicular morphology and oxidative stress in oligoasthenospermia (OAT) rats, and to explore the mechanism and the optimal parameters of EA for OAT.
METHODS:
Sixty SPF-grade male SD rats were randomly divided into a solvent control group, a model group, a 2 Hz EA group, a 100 Hz EA group and a 2 Hz/100 Hz EA group, with 12 rats in each group. Except for the solvent control group, the other 4 groups were administered ornidazole suspension (800 mg·kg-1·d-1) by gavage for 28 d to establish the OAT model. Starting from the 1st of modeling, EA was applied at "Guanyuan" (CV4), "Qihai" (CV6) and bilateral "Sanyinjiao" (SP6) and "Zusanli" (ST36) in the 3 EA groups, continuous wave of 2 Hz, continuous wave of 100 Hz, and disperse-dense wave of 2 Hz/100 Hz were used in the 2 Hz EA group, the 100 Hz EA group, and the 2 Hz/100 Hz EA group, respectively, with current intensity of 1-3 mA, 30 min a time, once every other day, for 28 consecutive days. After intervention, the testicular index was calculated, epididymal sperm quality was assessed, and the fertility ability was observed; morphology of testicular tissue was observed by HE staining, and the Johnson score was calculated; the positive expression of reactive oxygen species (ROS) in testicular tissue was detected by immunofluorescence; the activity of superoxide dismutase (SOD) and catalase (CAT), as well as the level of malondialdehyde (MDA) in testicular tissue were measured by ELISA; the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in testicular tissue was detected by Western blot.
RESULTS:
Compared with the solvent control group, in the model group, the testicular index, sperm concentration, sperm motility and the number of offspring were decreased (P<0.01), the seminiferous tubules atrophied and the Johnson score decreased (P<0.01); the activity of SOD and CAT, as well as the protein expression of Nrf2 and HO-1 in testicular tissue were decreased (P<0.01); the sperm deformity rate, the positive expression of ROS and the MDA level in testicular tissue were increased (P<0.01). Compared with the model group, in the 2 Hz EA group, the 100 Hz EA group and the 2 Hz/100 Hz EA group, the testicular index, sperm concentration, sperm motility and the number of offspring were increased (P<0.05, P<0.01), the pathological morphology of testicular tissue improved and the Johnson scores increased (P<0.01); the activity of SOD and CAT, as well as the protein expression of Nrf2 and HO-1 in testicular tissue were increased (P<0.05, P<0.01); the sperm deformity rate, the positive expression of ROS and the MDA level in testicular tissue were decreased (P<0.05, P<0.01). Compared with the 2 Hz EA group, in the 2 Hz/100 Hz EA group, the testicular index, sperm concentration, sperm motility, as well as the CAT activity and HO-1 protein expression in testicular tissue were increased (P<0.01, P<0.05); the positive expression of ROS was decreased (P<0.01). Compared with the 100 Hz EA group, in the 2 Hz/100 Hz EA group, the testicular index was increased (P<0.01), the positive expression of ROS in testicular tissue was decreased (P<0.01).
CONCLUSION
EA with 2 Hz continuous wave, 100 Hz continuous wave, and 2 Hz/100 Hz disperse-dense wave can all improve the spermatogenic arrest and reduce the level of oxidative stress in testicular tissue in OAT rats, the mechanism may be related to up-regulating the protein expression of Nrf2 and HO-1 and improving oxidative stress. EA with disperse-dense wave of 2 Hz/100 Hz shows the optimal effect.
Male
;
Animals
;
Electroacupuncture
;
Oxidative Stress
;
Rats
;
Rats, Sprague-Dawley
;
Spermatogenesis
;
Oligospermia/genetics*
;
Humans
;
Testis/metabolism*
;
Superoxide Dismutase/metabolism*
;
Asthenozoospermia/genetics*
;
Acupuncture Points
;
Malondialdehyde/metabolism*
4.Protective effect of aliskiren on renal injury in AGT-REN double transgenic hypertensive mice.
Xiao-Ling YANG ; Yan-Yan CHEN ; Hua ZHAO ; Bo-Yang ZHANG ; Xiao-Fu ZHANG ; Xiao-Jie LI ; Xiu-Hong YANG
Acta Physiologica Sinica 2025;77(3):408-418
This study aims to investigate the effects of renin inhibitor aliskiren on kidney injury in human angiotensinogen-renin (AGT-REN) double transgenic hypertensive (dTH) mice and explore its possible mechanism. The dTH mice were divided into hypertension group (HT group) and aliskiren intervention group (HT+Aliskiren group), while wild-type C57BL/6 mice were served as the control group (WT group). Blood pressure data of mice in HT+Aliskiren group were collected after 28 d of subcutaneous penetration of aliskiren (20 mg/kg), and the damage of renal tissue structure and collagen deposition were observed by HE, Masson and PAS staining. The ultrastructure of kidney was observed by transmission electron microscope. Coomassie bright blue staining and biochemical analyzer were used to detect renal function injury. The expression of renin-angiotensin system (RAS) was determined by ELISA and immunohistochemistry. The contents of superoxide dismutase (SOD) and malondialdehyde (MDA) in kidney were determined by chemiluminescence method. The content of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47phox, inducible nitric oxide synthase (iNOS), 3-nitrotyrosine (3-NT), NADPH oxidase 2 (NOX2) and NADPH oxidase 4 (NOX4) were detected by Western blot analysis. The results showed that compared with WT group, the blood pressure of mice in HT group was significantly increased. The renal tissue structure in HT group showed glomerular sclerosis, severe interstitial tubular injury, and increased collagen deposition. In addition, 24 h urinary protein, serum creatinine and urea levels increased. Serum and renal tissue levels of angiotensin II (Ang II) were increased, serum angiotensin-(1-7) [Ang-(1-7)] expression was decreased, and renal Ang-(1-7) expression was elevated. The expressions of ACE, Ang II type 1 receptor (AT1R) and MasR in renal tissue were increased, while the expression of ACE2 was decreased. MDA content increased, SOD content decreased, and the expressions of p47phox, iNOS, 3-NT, NOX2 and NOX4 were increased. However, aliskiren reduced blood pressure in dTH mice, improved renal structure and renal function, reduced Ang II and Ang-(1-7) levels in serum and renal tissue, reduced the expression of ACE and AT1R in renal tissue, increased the expression of ACE2 and MasR in renal tissue, and decreased the above levels of oxidative stress indexes in dTH mice. These results suggest that aliskiren may play a protective role in hypertensive renal injury by regulating the balance between ACE-Ang II-AT1R and ACE2-Ang-(1-7)-MasR axes and inhibiting oxidative stress.
Animals
;
Fumarates/therapeutic use*
;
Mice
;
Renin/antagonists & inhibitors*
;
Amides/therapeutic use*
;
Mice, Inbred C57BL
;
Hypertension/physiopathology*
;
Mice, Transgenic
;
Kidney/pathology*
;
Angiotensinogen/genetics*
;
Renin-Angiotensin System/drug effects*
;
NADPH Oxidases/metabolism*
;
Male
;
Antihypertensive Agents/pharmacology*
;
Humans
;
Superoxide Dismutase/metabolism*
;
NADPH Oxidase 4
5.Mechanism of Cyanotis arachnoidea Gel in improving melasma based on network pharmacology and transcriptomics.
Mamattursun MARZIYA ; Li-Ying QIU ; Wan-Quan BAI ; Amar DLRABA ; Chen MA ; Le ZHANG ; Jian GU
China Journal of Chinese Materia Medica 2025;50(13):3775-3790
Through a comprehensive analysis combining network pharmacology prediction and transcriptomics, this study systematically explained the multi-target mechanism of Cyanotis arachnoidea(CA) Gel in improving melasma. A melasma model was induced in female SD rats by progesterone injection combined with ultraviolet B(UVB) irradiation for 40 consecutive days, while the blank control group was only fed routinely. After successful model establishment, the rats were randomly divided into five groups and administered different doses of CA ethanol extract gel(high, medium, and low doses) or arbutin Gel(positive control), which were applied once daily for 28 consecutive days. Subsequently, the levels of superoxide dismutase(SOD), malondialdehyde(MDA), and tyrosinase(TYR) in the skin, serum, and liver tissues were measured. Hematoxylin-eosin(HE) staining and Masson-Fontana staining were used to observe the pathological changes in the tissues. Network pharmacology combined with transcriptomics was employed to identify core targets and pathways, and the differential gene expression was validated by quantitative real-time PCR(qPCR). Pharmacodynamic experiments showed that CA Gel significantly increased SOD activity and decreased MDA and TYR levels in the skin, serum, and liver of model rats. It also improved epidermal thickening, inflammatory infiltration, collagen loss, and melanin deposition. Network pharmacology analysis showed that CA mainly regulated core targets such as signal transducer and activator of transcription 3(STAT3), epidermal growth factor receptor(EGFR), and interleukin-6(IL-6), and modulated the phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT) and interleukin-17(IL-17) signaling pathways. Transcriptomic analysis showed that CA Gel significantly downregulated the gene expression of heat shock protein 90β family member 1(Hsp90b1), heat shock protein 90α family member 1(Hsp90aa1), and the key steroid synthesis enzyme cytochrome P450 family 17 subfamily A member 1(Cyp17a1), while upregulating thioredoxin 1(Txn1). qPCR results confirmed that CA Gel regulated oxidative stress and inflammatory response by inhibiting the IL-17 signaling pathway and steroid hormone synthesis. This study, for the first time, reveals the molecular mechanism of CA Gel in improving melasma through multi-target synergistic regulation of oxidative stress, inflammatory response, and hormone metabolism pathways, providing a scientific basis for the treatment of pigmentation diseases with traditional Chinese medicine.
Animals
;
Rats
;
Female
;
Rats, Sprague-Dawley
;
Network Pharmacology
;
Drugs, Chinese Herbal/administration & dosage*
;
Melanosis/metabolism*
;
Transcriptome/drug effects*
;
Humans
;
Superoxide Dismutase/genetics*
;
Signal Transduction/drug effects*
;
Malondialdehyde/metabolism*
6.Effects of mild hypothermia on neurological function in rats with spinal cord injury based on adenosine monophosphate activated protein kinase/Nod-like receptor protein 3 pathway.
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(11):1468-1473
OBJECTIVE:
To investigate the effect of mild hypothermia on neurological function in rats with spinal cord injury (SCI) based on the adenosine monophosphate activated protein kinase (AMPK)/Nod-like receptor protein 3 (NLRP3) pathway.
METHODS:
Fifty 7-8 weeks old SPF male Sprague Dawley rats were used to establish rat model of SCI by Allen's method. Among them, 48 successfully modeled rats were randomly divided into SCI group, mild hypothermia group (SCI+mild hypothermia treatment), and Compound C group (SCI+mild hypothermia+intraperitoneal injection of 20 mg/kg AMPK/NLRP3 pathway inhibitor Compound C), with 16 rats in each group. Another 16 normal rats with laminectomy were selected as sham-operation group. Basso-Beattie-Bresnahan (BBB) score was used to evaluate the motor ability of rats at 1, 3, 7, 14 days after treatment. After 14 days, the rats were sacrificed, and the spinal cord histopathological morphology was observed by HE staining, the neuronal apoptosis in spinal cord tissue was detected by TUNEL assay, and the serum levels of interleukin 2 (IL-2), IL-6, transforming growth factor β 1 (TGF-β 1), malondialdehyde (MDA), and superoxide dismutase (SOD) were detected by ELISA. The expressions of AMPK/NLRP3 pathway proteins in spinal cord tissue, including B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and cleaved-Caspase-9 were detected by Western blot.
RESULTS:
At 1 day after treatment, the rats in SCI group, mild hypothermia group, and Compound C group did not recover their motor ability. With the prolongation of time, the motor function of rats in each group gradually recovered. Among them, the BBB score of SCI group was significantly lower than that of sham-operation group and mild hypothermia group ( P<0.05), and the BBB score of Compound C group was significantly lower than that of mild hypothermia group ( P<0.05). Compared with the sham-operation group, the SCI group displayed obvious pathological changes in the spinal cord tissue, with disordered tissue architecture, inflammatory infiltration, and blurred interstitial boundaries. The neuronal apoptosis rate, Bax/Bcl-2 ratio, cleaved Caspase-9 expression, NLRP3 protein expression, serum IL-2, IL-6, and MDA levels were elevated, whereas serum TGF-β 1, SOD levels, and spinal cord phosphorylation AMPK/AMPK protein expression significantly decreased ( P<0.05). Compared with the SCI group, the above phenomena significantly improved in the mild hypothermia group ( P<0.05), while the Compound C group showed the opposite trend of change compared to the mild hypothermia group ( P<0.05).
CONCLUSION
Mild hypothermia can attenuate neurological dysfunction after SCI in rats, potentially by activating the AMPK/NLRP3 pathway.
Animals
;
Spinal Cord Injuries/physiopathology*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
AMP-Activated Protein Kinases/metabolism*
;
Hypothermia, Induced
;
Signal Transduction
;
Spinal Cord/pathology*
;
Apoptosis
;
Interleukin-6/metabolism*
;
Disease Models, Animal
;
bcl-2-Associated X Protein/metabolism*
;
Superoxide Dismutase/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Caspase 9/metabolism*
7.Dihuang Yinzi Regulates cAMP/PKA/CREB-BDNF to Improve Synaptic Plasticity in APP/PS1 Mice: A Study Based on Brain Metabolomics.
Huan-Ning JIANG ; Bo ZHANG ; Jian ZHANG ; Yan-Yan ZHOU
Chinese journal of integrative medicine 2025;31(11):991-1000
OBJECTIVE:
To explore the mechanism of Dihuang Yinzi (DHYZ) in the treatment of Alzheimer's disease (AD) by integrating metabolomics and experimental verification.
METHODS:
Forty-eight male APP/PS1 mice were divided into model, high- (DHYZ-H), medium- (DHYZ-M), and low-dose DHYZ (DHYZ-L) groups (12 mice per group) according to a random number table. Mice in DHYZ groups were gavaged with DHYZ 6.34, 12.68, and 25.35 g/(kg·d), respectively. Twelve C57BL/6 mice were gavaged with distilled water as the blank group. Metabolomics was used to analyze differential metabolites in the brains of mice. Morris water maze test was used to detect the memory abilities of mice. The hematoxylin-eosin staining and transmission electron microscopy were used to observe the general morphology and ultrastructure of neurons. The enzyme-linked immunosorbent assay was used to detect the levels of superoxide dismutase (SOD), reactive oxygen species (ROS), and amyloid β -protein 1-42 (A β1-42). The real-time quantitative polymerase chain reaction was used to detect the mRNA expressions of density-regulated protein 1 (DRP1), fission 1 (FIS1), mitofusin-1 (MFN1), and optic atrophy protein 1 (OPA1). Western blot was used to detect the protein expressions of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP response binding protein (CREB), brain-derived neurotrophic factor (BDNF), synapsin 1 (SYN1), synaptophysin (SYP), and postsynaptic density protein 95 (PSD95).
RESULTS:
A total of 82 differential metabolites were identified in the brains of APP/PS1 mice, among which 7 differential metabolites could be regulated by DHYZ. After DHYZ intervention, the memory abilities of mice significantly increased (P<0.05 or P<0.01), the number of synapses and neurons in the hippocampus increased, and the mitochondrial morphology and structure were relatively intact. The DHYZ groups exhibited a significant reduction in hippocampal ROS and A β1-42 levels, along with a significant elevation in SOD level (P<0.05 or P<0.01). The mRNA expressions of DRP1 and FIS1 were reduced, while the mRNA expressions of MFN1 and OPA1 were increased after DHYZ treatment (P<0.05 or P<0.01). The cAMP/PKA/CREB-BDNF pathway was activated, and the expressions of SYN1, SYP and PSD95 proteins were significantly increased in the DHYZ-H group (P<0.05 or P<0.01).
CONCLUSIONS
DHYZ could improve mitochondrial dynamics and synaptic plasticity in APP/PS1 mice, inhibit oxidative stress, and thereby enhancing learning and memory abilities in APP/PS1 mice. Its mechanism might be related to activation of the cAMP/PKA/CREB-BDNF signaling pathway.
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Male
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Brain/drug effects*
;
Metabolomics
;
Mice, Inbred C57BL
;
Neuronal Plasticity/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Cyclic AMP-Dependent Protein Kinases/metabolism*
;
Cyclic AMP/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Mice, Transgenic
;
Mice
;
Amyloid beta-Peptides/metabolism*
;
Signal Transduction/drug effects*
;
Alzheimer Disease/drug therapy*
;
Superoxide Dismutase/metabolism*
8.Ameliorative effects and mechanisms of an integrated endoplasmic reticulum stress inhibitor on lipopolysaccharide-induced cognitive impairment in mice.
Dandan LIU ; Wenjia LIU ; Lihua XIE ; Xiaofan XU ; Xiaolin ZHONG ; Wenyu CAO ; Yang XU ; Ling CHEN
Journal of Central South University(Medical Sciences) 2025;50(6):986-994
OBJECTIVES:
The integrated endoplasmic reticulum stress inhibitor (ISRIB) is a selective inhibitor of the protein kinase R-like endoplasmic reticulum kinase (PERK) signaling pathway within endoplasmic reticulum stress (ERS) and can improve spatial and working memory in aged mice. Although ERS and oxidative stress are tightly interconnected, it remains unclear whether ISRIB alleviates cognitive impairment by restoring the balance between ERS and oxidative stress. This study aims to investigate the effects and mechanisms of ISRIB on lipopolysaccharide (LPS)-induced cognitive impairment in mice.
METHODS:
Eight-week-old male ICR mice were randomly divided into 3 groups: Normal saline (NS) group, LPS group, and ISRIB+LPS group. NS and LPS groups received daily intraperitoneal injections of normal saline for 7 days; on day 7, LPS group mice received intraperitoneal LPS (0.83 mg/kg) to establish a cognitive impairment model. ISRIB+LPS group received ISRIB (0.25 mg/kg) intraperitoneally for 7 days, with LPS injected 30 minutes after ISRIB on day 7. Cognitive ability was evaluated by the novel place recognition test (NPRT). Real-time fluorogenic quantitative PCR (RT-qPCR) was used to detect changes in nitric oxide synthase (NOS), superoxide dismutase-1 (SOD-1), and catalase (CAT) gene expression in the hippocampus and prefrontal cortex. Oxidative stress markers malondialdehyde (MDA), glutathione (GSH), and oxidized glutathione (GSSG), were measured in hippocampal and prefrontal cortex tissues.
RESULTS:
Compared with the NS group, mice in LPS group showed a significant reduction in novel place recognition ratio, upregulation of hippocampal NOS-1 and NOS-2 mRNA, downregulation of SOD-1 and CAT mRNA, increased MDA and GSSG, decreased GSH, and reduced GSH/GSSG ratio (all P<0.05). Compared with the LPS group, mice in ISRIB+LPS group exhibited significantly improved novel place recognition, downregulated NOS-1 and NOS-2 mRNA, upregulated SOD-1 and CAT mRNA, decreased MDA and GSSG, increased GSH, and an elevated GSH/GSSG ratio in the hippocampus (all P<0.05). No significant changes were observed in the prefrontal cortex.
CONCLUSIONS
ISRIB improves LPS-induced cognitive impairment in mice by restoring the oxidative/antioxidant balance in the hippocampus.
Animals
;
Lipopolysaccharides
;
Male
;
Mice, Inbred ICR
;
Cognitive Dysfunction/drug therapy*
;
Mice
;
Oxidative Stress/drug effects*
;
Endoplasmic Reticulum Stress/drug effects*
;
Hippocampus/drug effects*
;
Nitric Oxide Synthase Type II/genetics*
;
Guanidines/pharmacology*
;
eIF-2 Kinase/antagonists & inhibitors*
;
Signal Transduction/drug effects*
;
Superoxide Dismutase/metabolism*
9.Lactobacillus plantarum ZG03 alleviates oxidative stress via its metabolites short-chain fatty acids.
Shuxian LIN ; Lina GUO ; Yan MA ; Yao XIONG ; Yingxi HE ; Xinzhu XU ; Wen SHENG ; Suhua XU ; Feng QIU
Journal of Southern Medical University 2025;45(10):2223-2230
OBJECTIVES:
To investigate the efficacy of Lactobacillus plantarum ZG03 (L. plantarum ZG03) for ameliorating oxidative stress in zebrafish.
METHODS:
We evaluated the growth pattern of L. plantarum ZG03, observed its morphology using field emission scanning electron microscopy, and assessed its safety and potential efficacy with whole-genome sequencing for genetic analysis. FITC-labeled ZG03 was used to observe its intestinal colonization in zebrafish. In a zebrafish model of 2% glucose-induced oxidative stress, the effect of ZG03 was evaluated by assessing the changes in neutrophils in the caudal hematopoietic tissue (CHT), superoxide dismutase (SOD) activity, reactive oxygen species (ROS) levels, and malondialdehyde (MDA) content. Liquid chromatography-mass spectrometry-based targeted metabolomics was used for analyzing short-chain fatty acids (SCFAs) in the zebrafish, and the antioxidant effects of the key metabolites (acetate, propionate, and caproate) were tested.
RESULTS:
On MRS agar, L. plantarum ZG03 formed circular, smooth, moist, and milky-white colonies with a rod-shaped cell morphology. Genomic analysis revealed abundant sugar metabolism gene clusters. After inoculation of FITC-labeled L. plantarum ZG03 in zebrafish, green fluorescence was clearly observed in the intestinal bulb, mid-intestine, and hind intestine. In zebrafish with glucose-induced oxidative stress, L. plantarum ZG03 significantly reduced ROS levels and the number of neutrophils in the CHT with increased SOD activity. L.plantarum ZG03 significantly increased the content of SCFAs including acetic acid, propionic acid, and caproic acid in zebrafish metabolites. In addition, sodium acetate, sodium propionate, and sodium caproate in the SCFAs significantly increased SOD activity in the zebrafish models.
CONCLUSIONS
L. plantarum ZG03 ameliorates oxidative stress in a glucose-induced zebrafish model through its metabolites, particularly the SCFAs including acetic acid, propionic acid and caproic acid.
Animals
;
Zebrafish/metabolism*
;
Oxidative Stress
;
Lactobacillus plantarum/metabolism*
;
Fatty Acids, Volatile/metabolism*
;
Probiotics
;
Reactive Oxygen Species/metabolism*
;
Superoxide Dismutase/metabolism*
10.Autophagy reduces bacterial translocation by regulating intestinal mucosal oxidative stress.
Xing LU ; Chengfen YIN ; Yaxiao SU ; Xinjing GAO ; Fengmei WANG ; Lei XU
Chinese Critical Care Medicine 2025;37(2):153-159
OBJECTIVE:
To investigate the mechanism of autophagy in regulating bacterial translocation in intestinal infection caused by hypervirulent Klebsiella pneumonia (hvKp) and explore the method of reducing translocation infection of intestinal bacteria.
METHODS:
Fifty C57BL/6J mice were divided into gavage group (n = 40) and control group (CO group, n = 10). The gavage group was orally administered with 200 μL/d of hvKp (colony count of 109 CFU/mL) continuously for 5 days to establish a hvKp intestinal infection model. CO group was given an equal amount of normal saline. After the experiment, the mice were anesthetized with lsofluraneand euthanized with cervical dislocation under anesthesia. Peripheral venous blood of mice was collected to detect bacterial translocation by 16S rDNA sequencing, then divided into translocation group (BT+ group) and non-translocation group (BT- group). Hematoxylin-eosin (HE) staining was used to evaluate intestinal morphology. The ultrastructural changes of intestinal tissues were observed by electron microscope. The levels of intestinal oxidative stress indicators such as superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GPx) were measured. Translocation was detected by in situ hybridization. The expression of tight junction protein microtubule-associated protein 1 light chain 3-II (LC3-II) and autophagy protein Beclin-1 were measured by Western blotting. The mRNA expression of tight junction proteins ZO-1 and Claudin-2 were detected by reverse transcription-polymerase chain reaction (RT-PCR). The expression of autophagy protein and tight junction protein were observed by immunofluorescence.
RESULTS:
Two out of 40 mice in the gavage group died after developing aspiration pneumonia. All mice in the CO group survived. The 16S rDNA sequencing results showed that no bacteria were detected in the peripheral blood of the CO group, but bacteria were detected in the peripheral blood of 18 mice in the gavage group, with a bacterial translocation rate of 47.4%. The BT- and BT+ groups showed intestinal mucosal tissue damage, with severe damage in the BT+ group. Compared with the CO group, the level of MDA in the BT- and BT+ groups were significantly increased, while the activities of SOD and GPx were significantly decreased. Compared with the BT- group, the MDA level in the BT+ group further increased, while the SOD and GPx activities further decreased [MDA (mmol/mg): 2.98±0.11 vs. 2.48±0.11, SOD (U/mg): 62.40±5.45 vs. 73.40±4.08, GPx (U/mg): 254.72±10.80 vs. 303.55±8.57, all P < 0.01]. The results of in situ hybridization detection showed that after continuous gastric lavage for 5 days, displaced hvKp was detected in the intestinal mucosal lamina propria and liver tissue of the BT+ group. Compared with the CO group, the protein expressions of LC3-II and Beclin-1 in the BT- and BT+ groups were significantly increased. The protein expressions of LC3-II and Beclin-1 in the BT+ group were obviously lower than those in the BT- group (LC3-II/β-actin: 0.38±0.04 vs. 0.70±0.09, Beclin-1/β-actin: 0.62±0.05 vs. 0.86±0.05, both P < 0.01), and there were autophagosomes in the intestinal mucosa. These results indicated that intestinal mucosal autophagy was activated after hvKp continuous gavage. Compared with CO group, the mRNA expressions of ZO-1 and Claudin-2 in the BT- and BT+ groups were significantly decreased. Compared with the BT- group, the mRNA expressions of ZO-1 and Claudin-2 in the BT+ group was further reduced [ZO-1 mRNA (2-ΔΔCT): 0.78±0.06 vs. 0.88±0.06, Claudin-2 mRNA (2-ΔΔCT): 0.40±0.04 vs. 0.70±0.06, both P < 0.01]. The immunofluorescence results showed that the fluorescence intensity of LC3-II, Beclin-1, ZO-1, and Claudin-2 in the BT+ group was significantly lower than that in the BT- group.
CONCLUSION
HvKp can activate intestinal mucosal autophagy and reduce the damage to intestinal mucosal barrier function by down-regulating oxidative stress level, reduce the occurrence of bacterial translocation.
Animals
;
Oxidative Stress
;
Mice, Inbred C57BL
;
Autophagy
;
Intestinal Mucosa/microbiology*
;
Bacterial Translocation
;
Mice
;
Klebsiella Infections/microbiology*
;
Superoxide Dismutase/metabolism*
;
Beclin-1

Result Analysis
Print
Save
E-mail