1.Propensity score matching for comparative studies: a tutorial with R and Rex
Bora LEE ; Nam-eun KIM ; Sungho WON ; Jungsoo GIM
Journal of Minimally Invasive Surgery 2024;27(2):55-71
Recently, there has been considerable progress in developing new technologies and equipment for the medical field, including minimally invasive surgeries. Evaluating the effectiveness of these treatments requires study designs like randomized controlled trials.However, due to the nature of certain treatments, randomization is not always feasible, leading to the use of observational studies. The effect size estimated from observational studies is subject to selection bias caused by confounders. One method to reduce this bias is propensity scoring. This study aimed to introduce a propensity score matching process between two groups using a practical example with R. Additionally, Rex, an Excel add-in graphical user interface statistical program, is provided for researchers unfamiliar with R programming.Further techniques, such as matching with three or more groups, propensity score weighting and stratification, and imputation of missing values, are summarized to offer approaches for more complex studies not covered in this tutorial.
2.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
3.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
4.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
5.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
6.Effect of platelet-rich plasma in Achilles tendon allograft in rabbits
Seok-Hong PARK ; Dong-Yub KIM ; Won-Jae LEE ; Min JANG ; Seong Mok JEONG ; Sae-Kwang KU ; Young-Sam KWON ; Sungho YUN
Journal of Veterinary Science 2024;25(2):e22-
Background:
Achilles tendon is composed of dense connective tissue and is one of the largest tendons in the body. In veterinary medicine, acute ruptures are associated with impact injury or sharp trauma. Healing of the ruptured tendon is challenging because of poor blood and nerve supply as well as the residual cell population. Platelet-rich plasma (PRP) contains numerous bioactive agents and growth factors and has been utilized to promote healing in bone, soft tissue, and tendons.
Objective:
The purpose of this study was to evaluate the healing effect of PRP injected into the surrounding fascia of the Achilles tendon after allograft in rabbits.
Methods:
Donor rabbits (n = 8) were anesthetized and 16 lateral gastrocnemius tendons were fully transected bilaterally. Transected tendons were decellularized and stored at −80°C prior to allograft. The allograft was placed on the partially transected medial gastrocnemius tendon in the left hindlimb of 16 rabbits. The allograft PRP group (n = 8) had 0.3 mL of PRP administered in the tendon and the allograft control group (n = 8) did not receive any treatment. After 8 weeks, rabbits were euthanatized and allograft tendons were transected for macroscopic, biomechanical, and histological assessment.
Results:
The allograft PRP group exhibited superior macroscopic assessment scores, greater tensile strength, and a histologically enhanced healing process compared to those in the allograft control group.
Conclusions
Our results suggest administration of PRP on an allograft tendon has a positive effect on the healing process in a ruptured Achilles tendon.
7.Development of Prediction Model Using Machine-Learning Algorithms for Nonsteroidal Anti-inflammatory Drug-Induced Gastric Ulcer in Osteoarthritis Patients: Retrospective Cohort Study of a Nationwide South Korean Cohort
Jaehan JEONG ; Hyein HAN ; Du Hyun RO ; Hyuk-Soo HAN ; Sungho WON
Clinics in Orthopedic Surgery 2023;15(4):678-689
Background:
Nonsteroidal anti-inflammatory drugs (NSAID) are currently among the most prescribed medications worldwide to relieve pain and reduce inflammation, especially in patients suffering osteoarthritis (OA). However, NSAIDs are known to have adverse effects on the gastrointestinal system. If a gastric ulcer occurs, planned OA treatment needs to be changed, incurring additional treatment costs and causing discomfort for both patients and clinicians. Therefore, it is necessary to create a gastric ulcer prediction model that can reflect the detailed health status of each individual and to use it when making treatment plans.
Methods:
Using sample cohort data from 2008 to 2013 from the National Health Insurance Service in South Korea, we developed a prediction model for NSAID-induced gastric ulcers using machine-learning algorithms and investigated new risk factors associated with medication and comorbidities.
Results:
The population of the study consisted of 30,808 patients with OA who were treated with NSAIDs between 2008 and 2013. After a 2-year follow-up, these patients were divided into two groups: without gastric ulcer (n=29,579) and with gastric ulcer (n=1,229). Five machine-learning algorithms were used to develop the prediction model, and a gradient boosting machine (GBM) was selected as the model with the best performance (area under the curve, 0.896; 95% confidence interval, 0.883–0.909). The GBM identified 5 medications (loxoprofen, aceclofenac, talniflumate, meloxicam, and dexibuprofen) and 2 comorbidities (acute upper respiratory tract infection [AURI] and gastroesophageal reflux disease) as important features. AURI did not have a dose-response relationship, so it could not be interpreted as a significant risk factor even though it was initially detected as an important feature and improved the prediction performance.
Conclusions
We obtained a prediction model for NSAID-induced gastric ulcers using the GBM method. Since personal prescription period and the severity of comorbidities were considered numerically, individual patients’ risk could be well reflected. The prediction model showed high performance and interpretability, so it is meaningful to both clinicians and NSAID users.
8.Genome-Wide Association Study on Longitudinal Change in Fasting Plasma Glucose in Korean Population
Heejin JIN ; Soo Heon KWAK ; Ji Won YOON ; Sanghun LEE ; Kyong Soo PARK ; Sungho WON ; Nam H. CHO
Diabetes & Metabolism Journal 2023;47(2):255-266
Background:
Genome-wide association studies (GWAS) on type 2 diabetes mellitus (T2DM) have identified more than 400 distinct genetic loci associated with diabetes and nearly 120 loci for fasting plasma glucose (FPG) and fasting insulin level to date. However, genetic risk factors for the longitudinal deterioration of FPG have not been thoroughly evaluated. We aimed to identify genetic variants associated with longitudinal change of FPG over time.
Methods:
We used two prospective cohorts in Korean population, which included a total of 10,528 individuals without T2DM. GWAS of repeated measure of FPG using linear mixed model was performed to investigate the interaction of genetic variants and time, and meta-analysis was conducted. Genome-wide complex trait analysis was used for heritability calculation. In addition, expression quantitative trait loci (eQTL) analysis was performed using the Genotype-Tissue Expression project.
Results:
A small portion (4%) of the genome-wide single nucleotide polymorphism (SNP) interaction with time explained the total phenotypic variance of longitudinal change in FPG. A total of four known genetic variants of FPG were associated with repeated measure of FPG levels. One SNP (rs11187850) showed a genome-wide significant association for genetic interaction with time. The variant is an eQTL for NOC3 like DNA replication regulator (NOC3L) gene in pancreas and adipose tissue. Furthermore, NOC3L is also differentially expressed in pancreatic β-cells between subjects with or without T2DM. However, this variant was not associated with increased risk of T2DM nor elevated FPG level.
Conclusion
We identified rs11187850, which is an eQTL of NOC3L, to be associated with longitudinal change of FPG in Korean population.
9.Cost-Effectiveness of All-Oral Regimens for the Treatment of Multidrug-Resistant Tuberculosis in Korea: Comparison With Conventional Injectable-Containing Regimens
Hae-Young PARK ; Jin-Won KWON ; Hye-Lin KIM ; Sun-Hong KWON ; Jin Hyun NAM ; Serim MIN ; In-Sun OH ; Sungho BEA ; Sun Ha CHOI
Journal of Korean Medical Science 2023;38(21):e167-
Background:
Regimens for the treatment of multidrug-resistant tuberculosis (MDR-TB) have been changed from injectable-containing regimens to all-oral regimens. The economic effectiveness of new all-oral regimens compared with conventional injectable-containing regimens was scarcely evaluated. This study was conducted to compare the cost-effectiveness between all-oral longer-course regimens (the oral regimen group) and conventional injectablecontaining regimens (the control group) to treat newly diagnosed MDR-TB patients.
Methods:
A health economic analysis over lifetime horizon (20 years) from the perspective of the healthcare system in Korea was conducted. We developed a combined simulation model of a decision tree model (initial two years) and two Markov models (remaining 18 years, sixmonth cycle length) to calculate the incremental cost-effectiveness ratio (ICER) between the two groups. The transition probabilities and cost in each cycle were assumed based on the published data and the analysis of health big data that combined country-level claims data and TB registry in 2013–2018.
Results:
The oral regimen group was assumed to spend 20,778 USD more and lived 1.093 years or 1.056 quality-adjusted life year (QALY) longer than the control group. The ICER of the base case was calculated to be 19,007 USD/life year gained and 19,674 USD/QALY. The results of sensitivity analyses showed that base case results were very robust and stable, and the oral regimen was cost-effective with a 100% probability for a willingness to pay more than 21,250 USD/QALY.
Conclusion
This study confirmed that the new all-oral longer regimens for the treatment of MDR-TB were cost-effective in replacing conventional injectable-containing regimens.
10.Laboratory information management system for COVID-19 non-clinical efficacy trial data
Suhyeon YOON ; Hyuna NOH ; Heejin JIN ; Sungyoung LEE ; Soyul HAN ; Sung-Hee KIM ; Jiseon KIM ; Jung Seon SEO ; Jeong Jin KIM ; In Ho PARK ; Jooyeon OH ; Joon-Yong BAE ; Gee Eun LEE ; Sun-Je WOO ; Sun-Min SEO ; Na-Won KIM ; Youn Woo LEE ; Hui Jeong JANG ; Seung-Min HONG ; Se-Hee AN ; Kwang-Soo LYOO ; Minjoo YEOM ; Hanbyeul LEE ; Bud JUNG ; Sun-Woo YOON ; Jung-Ah KANG ; Sang-Hyuk SEOK ; Yu Jin LEE ; Seo Yeon KIM ; Young Been KIM ; Ji-Yeon HWANG ; Dain ON ; Soo-Yeon LIM ; Sol Pin KIM ; Ji Yun JANG ; Ho LEE ; Kyoungmi KIM ; Hyo-Jung LEE ; Hong Bin KIM ; Jun Won PARK ; Dae Gwin JEONG ; Daesub SONG ; Kang-Seuk CHOI ; Ho-Young LEE ; Yang-Kyu CHOI ; Jung-ah CHOI ; Manki SONG ; Man-Seong PARK ; Jun-Young SEO ; Ki Taek NAM ; Jeon-Soo SHIN ; Sungho WON ; Jun-Won YUN ; Je Kyung SEONG
Laboratory Animal Research 2022;38(2):119-127
Background:
As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research.
Results:
In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research.
Conclusions
This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.

Result Analysis
Print
Save
E-mail