1.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
2.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
3.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
4.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
5.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
6.Hashimoto Thyroiditis and Mortality in Patients with Differentiated Thyroid Cancer: The National Epidemiologic Survey of Thyroid Cancer in Korea and Meta-Analysis
Injung YANG ; Jae Myung YU ; Hye Soo CHUNG ; Yoon Jung KIM ; Yong Kyun ROH ; Min Kyu CHOI ; Sung-ho PARK ; Young Joo PARK ; Shinje MOON
Endocrinology and Metabolism 2024;39(1):140-151
Background:
Many studies have shown that Hashimoto’s thyroiditis (HT) acts as a protective factor in differentiated thyroid cancer (DTC), but little is known about its effects on mortality. Therefore, this study was performed to reveal the prognosis of HT on mortality in patients with DTC.
Methods:
This study included two types of research results: retrospective cohort study using the National Epidemiologic Survey of Thyroid cancer (NEST) in Korea and meta-analysis study with the NEST data and eight selected studies.
Results:
Of the 4,398 patients with DTC in NEST, 341 patients (7.8%) died during the median follow-up period of 15 years (interquartile range, 12.3 to 15.6). Of these, 91 deaths (2.1%) were related to DTC. HT was associated with a smaller tumor size and less aggressive DTC. In Cox regression analysis after adjusting for age and sex, patients with HT showed a significantly lower risk of all-cause death (hazard ratio [HR], 0.71; 95% confidence interval [CI], 0.52 to 0.96) and DTC-related death (HR, 0.33; 95% CI, 0.14 to 0.77). The analysis with inverse probability of treatment weight data adjusted for age, sex, and year of thyroid cancer registration showed similar association. The meta-analysis showed that patients with HT showed a lower risk of all-cause mortality (risk ratio [RR], 0.24; 95% CI, 0.13 to 0.47) and thyroid cancer-related mortality (RR, 0.23; 95% CI, 0.13 to 0.40) in comparison with patients without HT.
Conclusion
This study showed that DTC co-presenting with HT is associated with a low risk of advanced DTC and presents a low risk for all-cause and DTC-related death.
7.Effectiveness of the Korean-Patient Placement Criteria for Alcohol Use Disorders: A Prospective Exploratory Study
Sang-Wook PARK ; Hayeong CHOI ; Eui Hyeon NA ; Hong Seok OH ; Sung Won ROH ; Sang Kyu LEE
Psychiatry Investigation 2024;21(7):792-802
Objective:
Various patient placement criteria (PPC) have been developed to address alcohol use disorder (AUD), which has a high relapse rate and imposes substantial socioeconomic costs. Although research has shown PPC to be an effective tool, evidence supporting the Korean-PPC (K-PPC) is insufficient. This paper investigated whether treatment matching with the K-PPC was effective, based on variables related to AUD.
Methods:
In total, 524 participants were evaluated using the 6 dimensions of the K-PPC and levels of care (LoC) were recommended based on the results. Participants whose treatment matched with the recommended LoC were classified into the matched group, and those whose treatment did not match were classified into the mismatched group. Subsequently, treatment was planned according to the determined LoC, and a total of 3 follow-up evaluations were conducted at 1 month, 3 months, and 6 months.
Results:
There was no significant difference in the follow-up rate between the K-PPC matched group and the mismatched group. Of the variables measured by the 6 dimensions of the K-PPC, alcohol-related variables, depression, insight, and biomedical outcomes showed the most significant results (especially alcohol-related variables) from the baseline evaluation to the 6-month follow-up. In addition, the average adherence to the treatment program in the 6-month period was found to be higher in the matched group than in the mismatched group.
Conclusion
The K-PPC could be effective for placing patients and providing treatment by matching patient characteristics. Enhancing treatment program retention can also have a positive effect on clinical outcomes.
8.Efficacy and Safety of Lurasidone vs. Quetiapine XR in Acutely Psychotic Patients With Schizophrenia in Korea: A Randomized, Double-Blind, Active-Controlled Trial
Se Hyun KIM ; Do-Un JUNG ; Do Hoon KIM ; Jung Sik LEE ; Kyoung-Uk LEE ; Seunghee WON ; Bong Ju LEE ; Sung-Gon KIM ; Sungwon ROH ; Jong-Ik PARK ; Minah KIM ; Sung Won JUNG ; Hong Seok OH ; Han-yong JUNG ; Sang Hoon KIM ; Hyun Seung CHEE ; Jong-Woo PAIK ; Kyu Young LEE ; Soo In KIM ; Seung-Hwan LEE ; Eun-Jin CHEON ; Hye-Geum KIM ; Heon-Jeong LEE ; In Won CHUNG ; Joonho CHOI ; Min-Hyuk KIM ; Seong-Jin CHO ; HyunChul YOUN ; Jhin-Goo CHANG ; Hoo Rim SONG ; Euitae KIM ; Won-Hyoung KIM ; Chul Eung KIM ; Doo-Heum PARK ; Byung-Ook LEE ; Jungsun LEE ; Seung-Yup LEE ; Nuree KANG ; Hee Yeon JUNG
Psychiatry Investigation 2024;21(7):762-771
Objective:
This study was performed to evaluate the efficacy and safety of lurasidone (160 mg/day) compared to quetiapine XR (QXR; 600 mg/day) in the treatment of acutely psychotic patients with schizophrenia.
Methods:
Patients were randomly assigned to 6 weeks of double-blind treatment with lurasidone 160 mg/day (n=105) or QXR 600 mg/day (n=105). Primary efficacy measure was the change from baseline to week 6 in Positive and Negative Syndrome Scale (PANSS) total score and Clinical Global Impressions severity (CGI-S) score. Adverse events, body measurements, and laboratory parameters were assessed.
Results:
Lurasidone demonstrated non-inferiority to QXR on the PANSS total score. Adjusted mean±standard error change at week 6 on the PANSS total score was -26.42±2.02 and -27.33±2.01 in the lurasidone and QXR group, respectively. The mean difference score was -0.91 (95% confidence interval -6.35–4.53). The lurasidone group showed a greater reduction in PANSS total and negative subscale on week 1 and a greater reduction in end-point CGI-S score compared to the QXR group. Body weight, body mass index, and waist circumference in the lurasidone group were reduced, with significantly lower mean change compared to QXR. Endpoint changes in glucose, cholesterol, triglycerides, and low-density lipoprotein levels were also significantly lower. The most common adverse drug reactions with lurasidone were akathisia and nausea.
Conclusion
Lurasidone 160 mg/day was found to be non-inferior to QXR 600 mg/day in the treatment of schizophrenia with comparable efficacy and tolerability. Adverse effects of lurasidone were generally tolerable, and beneficial effects on metabolic parameters can be expected.
9.Guidelines for the Laboratory Diagnosis of Monkeypox in Korea
Ki Ho HONG ; Gab Jung KIM ; Kyoung Ho ROH ; Hyukmin LEE ; Ok Kyu PARK ; Taek Soo KIM ; Jae-Seok KIM ; Jaehyeon LEE ; Moon-Woo SEONG ; So Yeon KIM ; Jae-Sun PARK ; Younhee PARK ; Hee Jae HUH ; Namhee RYOO ; Hyun Soo KIM ; Heungsup SUNG ; Cheon Kwon YOO ;
Annals of Laboratory Medicine 2023;43(2):137-144
While the coronavirus disease 2019 pandemic is ongoing, monkeypox has been rapidly spreading in non-endemic countries since May 2022. Accurate and rapid laboratory tests are essential for identifying and controlling monkeypox. Korean Society for Laboratory Medicine and the Korea Disease Prevention and Control Agency have proposed guidelines for diagnosing monkeypox in clinical laboratories in Korea. These guidelines cover the type of tests, selection of specimens, collection of specimens, diagnostic methods, interpretation of test results, and biosafety. Molecular tests are recommended as confirmatory tests. Skin lesion specimens are recommended for testing in the symptomatic stage, and the collection of both blood and oropharyngeal swabs is recommended in the presymptomatic or prodromal stage.
10.Case report of unusual complication following thread lifting: an obstructive stone in the parotid duct
Yoon Kyu CHUNG ; Min-Seok KIM ; Jin Yong SHIN ; Nae-Ho LEE ; Ho Sung PARK ; Si-Gyun ROH
Archives of Aesthetic Plastic Surgery 2023;29(3):170-173
Advances in plastic surgery have included a shift toward less invasive procedures. To improve outcomes and avoid incisional surgery, numerous noninvasive face-lifting techniques have been studied. This includes thread-lifting, a technique that promises to correct facial aging with limited scarring, rapid recovery, and minimal complications. As the population ages, an increasing number of ordinary people in South Korea are undergoing thread lifting procedures for the purpose of rejuvenation. The procedure involves insertion of a thread under the skin into the subcutaneous tissue, using a long needle as a guide. Dents or barbs prevent the thread from slipping and provide uniform aggregation of soft tissue to create a new volume contour when the thread is lifted. This procedure has gained worldwide popularity and is frequently performed. However, some minor complications have been reported. In this paper, we report an unusual complication: an obstructive stone in the parotid (Stensen) duct after a thread-lifting procedure using nonabsorbable anchoring threads.

Result Analysis
Print
Save
E-mail