2.Speech Perception and Mapping Characteristics of Cochlear Implant Patients With Autism Spectrum Disorder: Comparative Results After 10 Years of Use
Gi Jung IM ; Pyung Gon THAK ; Jae Hyung PARK ; Bong Il PARK ; Jiwon CHANG ; Euyhyun PARK ; Sung Won CHAE ; Hak Hyun JUNG
Korean Journal of Otolaryngology - Head and Neck Surgery 2025;68(4):152-158
Background and Objectives:
This study aimed to analyze postoperative performance and mapping characteristics of cochlear implants (CIs) by comparing patients with autism spectrum disorder (ASD) to those without ASD, and to suggest CI mapping solutions in patients with ASD.Subjects and Method This retrospective study enrolled 10 children with ASD and hearing disabilities, who received simultaneous bilateral CI (ASD group), and 20 children with bilateral hearing disabilities, who received simultaneous bilateral CI at the same age (control group). CI performance was analyzed using speech perception tests (categorical auditory performance score and monosyllable, bisyllable, and Ling’s 6 tests) and a sound field test. The mapping characteristics focused on variables related to stimulus intensity and fine-tuning.
Results:
The performance of the ASD group was significantly poorer than that of the control group in all speech perception and sound field tests. At the comfortable (C) and threshold (T) levels, the ASD group scored significantly lower than the control group. The dynamic range of ASD group was significantly narrower than the control group. The ASD group had significantly lower pulse width, sensitivity, and volume than control group.
Conclusion
CI mapping in the ASD group showed practical limitations. To avoid overstimulation in patients with ASD, the dynamic range should be set narrow, or the C/T level should be set lower than normal. Key control factors, such as pulse width, sensitivity, and volume, should be set lower than the control group. Although lower performance from CI is generally expected in the ASD group, CI mapping in the ASD group requires a long-term approach with dedicated efforts and patience.
4.A Radiologist’s Guide to IDH-Wildtype Glioblastoma for Efficient Communication With Clinicians: Part II–Essential Information on Post-Treatment Imaging
Philipp VOLLMUTH ; Philipp KARSCHNIA ; Felix SAHM ; Yae Won PARK ; Sung Soo AHN ; Rajan JAIN
Korean Journal of Radiology 2025;26(4):368-389
Owing to recent advancements in various postoperative treatment modalities, such as radiation, chemotherapy, antiangiogenic treatment, and immunotherapy, the radiological and clinical assessment of patients with isocitrate dehydrogenase-wildtype glioblastoma using post-treatment imaging has become increasingly challenging. This review highlights the challenges in differentiating treatment-related changes such as pseudoprogression, radiation necrosis, and pseudoresponse from true tumor progression and aims to serve as a guideline for efficient communication with clinicians for optimal management of patients with post-treatment imaging.
5.Establishing Normative Values for Entire Spinal Cord Morphometrics in East Asian Young Adults
Bio JOO ; Hyung Jun PARK ; Mina PARK ; Sang Hyun SUH ; Sung Jun AHN
Korean Journal of Radiology 2025;26(2):146-155
Objective:
The quantitative assessment of spinal cord volume is still in the early stages of development. Recently, normative morphometric values of the cervical spinal cord have been reported. This study aimed to establish normative values for spinal cord morphometry, extending beyond the cervical region to include the thoracic and lumbar spinal cord, and to examine the influence of sex and ethnicity on these measurements.
Materials and Methods:
This prospective study included 28 young, healthy, East Asian volunteers (14 males and 14 females;mean age, 30.14 ± 4.07 years) who underwent spinal cord MRI using a 3T scanner. The cross-sectional areas (CSAs), anteroposterior (AP) and transverse diameters, and compression ratios of the entire spinal cord were calculated. Additionally, the effects of sex and ethnicity on spinal cord volumetry were evaluated, with the influence of ethnicity assessed by comparing the findings with a Caucasian dataset from the PAM50 study.
Results:
The CSAs demonstrated two enlargements at the cervical and lumbar levels. The cervical enlargement at C4–5 exhibited an elliptical shape, while the lumbar enlargement at T12 appeared more circular. The CSAs and AP and transverse diameters of the spinal cords in males were significantly larger than that of females (P < 0.001). The spinal cord compression ratios in East Asians were significantly lower than those in Caucasians (P < 0.001).
Conclusion
This study revealed that the two spinal cord enlargements exhibit different patterns and suggest significant differences in spinal cord morphometric values according to sex and ethnicity.
6.Imaging Findings of Complications of New Anticancer Drugs
Ji Sung JANG ; Hyo Jung PARK ; Chong Hyun SUH ; Sang Eun WON ; Eun Seong LEE ; Nari KIM ; Do-Wan LEE ; Kyung Won KIM
Korean Journal of Radiology 2025;26(2):156-168
The anticancer drugs have evolved significantly, spanning molecular targeted therapeutics (MTTs), immune checkpoint inhibitors (ICIs), chimeric antigen receptor T-cell (CAR-T) therapy, and antibody-drug conjugates (ADCs). Complications associated with these drugs vary widely based on their mechanisms of action. MTTs that target angiogenesis can often lead to complications related to ischemia or endothelial damage across various organs, whereas non-anti-angiogenic MTTs present unique complications derived from their specific pharmacological actions. ICIs are predominantly associated with immunerelated adverse events, such as pneumonitis, colitis, hepatitis, thyroid disorders, hypophysitis, and sarcoid-like reactions. CAR-T therapy causes unique and severe complications including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. ADCs tend to cause complications associated with cytotoxic payloads. A comprehensive understanding of these drug-specific toxicities, particularly using medical imaging, is essential for providing optimal patient care. Based on this knowledge, radiologists can play a pivotal role in multidisciplinary teams. Therefore, radiologists must stay up-to-date on the imaging characteristics of these complications and the mechanisms underlying novel anticancer drugs.
7.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus.
8.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
9.A Radiologist’s Guide to IDH-Wildtype Glioblastoma for Efficient Communication With Clinicians:Part I–Essential Information on Preoperative and Immediate Postoperative Imaging
Philipp VOLLMUTH ; Philipp KARSCHNIA ; Felix SAHM ; Yae Won PARK ; Sung Soo AHN ; Rajan JAIN
Korean Journal of Radiology 2025;26(3):246-268
The paradigm of isocitrate dehydrogenase (IDH)-wildtype glioblastoma is rapidly evolving, reflecting clinical, pathological, and imaging advancements. Thus, it remains challenging for radiologists, even those who are dedicated to neuro-oncology imaging, to keep pace with this rapidly progressing field and provide useful and updated information to clinicians. Based on current knowledge, radiologists can play a significant role in managing patients with IDH-wildtype glioblastoma by providing accurate preoperative diagnosis as well as preoperative and postoperative treatment planning including accurate delineation of the residual tumor. Through active communication with clinicians, extending far beyond the confines of the radiology reading room, radiologists can impact clinical decision making. This Part 1 review provides an overview about the neuropathological diagnosis of glioblastoma to understand the past, present, and upcoming revisions of the World Health Organization classification.The imaging findings that are noteworthy for radiologists while communicating with clinicians on preoperative and immediate postoperative imaging of IDH-wildtype glioblastomas will be summarized.
10.Frequently Asked Questions on Imaging in Chimeric Antigen Receptor T-Cell Therapy Clinical Trials
Sang Eun WON ; Eun Sung LEE ; Chong Hyun SUH ; Sinae KIM ; Hyo Jung PARK ; Kyung Won KIM ; Jeffrey P. GUENETTE
Korean Journal of Radiology 2025;26(5):471-484
Clinical trials for chimeric antigen receptor (CAR) T-cell therapy are in the early stages but are expected to progress alongside new treatment approaches. This suggests that imaging will play an important role in monitoring disease progression, treatment response, and treatment-related side effects. There are, however, challenges that remain unresolved, regarding imaging in CAR T-cell therapy. We herein discuss the role of imaging, focusing on how tumor response evaluation varies according to cancer type and target antigens in CAR T-cell therapy. CAR T-cell therapy often produces rapid and significant responses, and imaging is vital for identifying side effects such as cytokine release syndrome and neurotoxicity. Radiologists should be aware of drug mechanisms, response assessments, and associated toxicities to effectively support these therapies. Additionally, this article highlights the importance of the Lugano criteria, which is essential for standardized assessment of treatment response, particularly in lymphoma therapies, and also explores other factors influencing imaging-based evaluation, including emerging methodologies and their potential to improve the accuracy and consistency of response assessments.

Result Analysis
Print
Save
E-mail