1.Comparative Analysis of Exercise-induced Transcriptomic Responses in Human and Mouse Homologous Genes: Divergence and Convergence Based on The GEPREP Database
Qian SUN ; Wei-Chu TAO ; Ru WANG ; Bing-Xiang XU
Progress in Biochemistry and Biophysics 2025;52(6):1617-1630
Exercise, as a non-pharmacological intervention, holds a pivotal role in metabolic regulation, neuroplasticity, and immune homeostasis maintenance. However, human exercise studies are constrained by ethical limitations in tissue sampling, especially for key organs such as muscles and the brain. Meanwhile, rodent models like mice exhibit physiological differences in exercise patterns and metabolic rates from human. Despite these challenges, approximately 70% of human and mouse genes are conserved, providing a molecular basis for cross-species comparisons. This paper leverages the GEPREP database, which integrates human and mouse exercise transcriptomic data from multiple platforms, to conduct a comprehensive cross-species analysis of exercise-induced gene expression patterns. We employ a stringent data standardization process, including the conversion of orthologous genes and the filtering of low-expressing genes, to ensure the accuracy and reliability of the analysis. A mixed-effects model is utilized to assess differential gene expression across multiple cohorts, identifying genes that are significantly upregulated or downregulated in response to exercise. The analysis reveals a complex pattern of gene expression, with a significant number of genes showing conserved responses between humans and mice, particularly in acute aerobic exercise, where genes such as ATF3, PPARGC1A, and ANKRD1 are commonly upregulated. These genes are implicated in muscle stress response, metabolic regulation, and muscle adaptation, highlighting the shared molecular pathways activated by exercise across species. However, the study also uncovers substantial species-specific differences in gene expression, especially in chronic aerobic exercise, where the number of divergently regulated genes increases. These differences suggest that while some fundamental biological processes are conserved, the specific regulatory mechanisms and gene expression patterns can vary significantly between humans and mice. Functional enrichment analysis further reveals that conserved genes are involved in muscle development, inflammation regulation, and energy metabolism, while species-specific genes are associated with ion transport, extracellular matrix (ECM) organization, and muscle contraction, indicating the multifaceted impact of exercise on skeletal muscle function. The findings emphasize the importance of considering species-specific differences when interpreting results from animal models and translating them to human health applications. The study highlights the need for a more nuanced understanding of the molecular underpinnings of exercise-induced adaptations and underscores the value of cross-species comparative analyses in uncovering the evolutionary and functional basis of these responses. Future research should focus on integrating multi-omics data and expanding the analysis to include other tissues to provide a more comprehensive view of the systemic effects of exercise. Additionally, the development of species-specific gene editing models and the validation of key genes in exercise physiology will further enhance our understanding of the evolutionary logic behind exercise interventions. This study not only provides valuable insights into the molecular mechanisms of exercise-induced adaptations but also underscores the necessity of validating findings from animal models in human cohorts to ensure the reliability and applicability of translational research in exercise science. By addressing these aspects, the study aims to bridge the gap between basic research and clinical applications, ultimately contributing to the development of personalized exercise prescriptions and interventions that can effectively promote health and prevent diseases.
2.Influence of iron metabolism on osteoporosis and modulating effect of traditional Chinese medicine.
Yi-Li ZHANG ; Bao-Yu QI ; Chuan-Rui SUN ; Xiang-Yun GUO ; Shuang-Jie YANG ; Ping LIU ; Xu WEI
China Journal of Chinese Materia Medica 2025;50(3):575-582
Recent studies have shown that an imbalance in iron metabolism can affect the composition and microstructural changes of bone, disrupting bone homeostasis and leading to osteoporosis(OP). The imbalance in iron metabolism, along with its induced local abnormal microenvironment and cellular iron death, has become a new focal point in OP research, drawing increasing attention from the academic community regarding the regulation of iron metabolism to prevent and manage OP. From the perspective of traditional Chinese medicine(TCM), iron metabolism imbalance has potential connections to TCM theories regarding internal organs, as well as treatments aimed at tonifying the kidney, strengthening the spleen, and activating blood circulation. Evidence is continually emerging that TCMs and effective components that tonify the kidney, strengthen the spleen, and activate blood circulation can prevent and manage OP by regulating iron metabolism. This article analyzes the relationship between iron and bone, as well as the effects of TCM formulations on improving iron metabolism and influencing bone metabolism, from the perspectives of iron metabolism mechanisms and TCM interventions, aiming to broaden existing clinical strategies for prevention and treatment and inject new momentum into the field of OP as it moves into a new era.
Osteoporosis/drug therapy*
;
Humans
;
Iron/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Medicine, Chinese Traditional
;
Bone and Bones/drug effects*
3.Application of integrated nursing for prostate cancer patients treated with robot-assisted radical prostatectomy.
Jin-Kai ZHANG ; Chen QIAN ; Xiang-Mei SUN ; Jin-Peng WEI
National Journal of Andrology 2025;31(5):444-448
OBJECTIVE:
To analyze the impact of the integrated nursing intervention on the sexual function, mental health and life quality of patients undergoing robot-assisted radical prostatectomy.
METHOD:
One hundred and twenty-eight patients who underwent robot-assisted radical prostatectomy at Jiangsu Cancer Hospital from May 2023 to May 2024 were included and randomly divided into control group and observation group using the method of random number table, with 64 cases in each group. The patients in control group received routine nursing care. And the integrated nursing was performed in the observation group. Perioperative indicators, scores of pre- and post-nursing sexual function assessment scale(assessed by IIEF-5), mental health scores (assessed by Medical Coping Questionnaire [MCMQ] and Hamilton Anxiety Scale [HAMA]), and quality of life scores ( assessed by Generic Quality of Life Inventory-74 [GQOLI-74] for benign prostatic hyperplasia) between two groups of patients were compared.
RESULT:
The time of operation and length of stay in the observation group were lower than those in the control group (P<0.05). Before the intervention of nursing, there was no statistically significant difference in IIEF-5, MCMQ, HAMA, and GQOLI-74 score between the two groups (P>0.05). After nursing, the IIEF5 score of the observation group was significantly higher than that of the control group. The scores of MCMQ, HAMA, and GQOLI-74 were significantly improved compared to the patients in control group (all P<0.05).
CONCLUSION
The application of integrated nursing is conducive to sexual function, coping strategies, quality of life and prognosis of the patients received robot-assisted radical prostatectomy.
Aged
;
Humans
;
Male
;
Middle Aged
;
Prostatectomy/nursing*
;
Prostatic Neoplasms/nursing*
;
Quality of Life
;
Robotic Surgical Procedures/nursing*
;
Surveys and Questionnaires
4.Qishen Granules Modulate Metabolism Flexibility Against Myocardial Infarction via HIF-1 α-Dependent Mechanisms in Rats.
Xiao-Qian SUN ; Xuan LI ; Yan-Qin LI ; Xiang-Yu LU ; Xiang-Ning LIU ; Ling-Wen CUI ; Gang WANG ; Man ZHANG ; Chun LI ; Wei WANG
Chinese journal of integrative medicine 2025;31(3):215-227
OBJECTIVE:
To assess the cardioprotective effect and impact of Qishen Granules (QSG) on different ischemic areas of the myocardium in heart failure (HF) rats by evaluating its metabolic pattern, substrate utilization, and mechanistic modulation.
METHODS:
In vivo, echocardiography and histology were used to assess rat cardiac function; positron emission tomography was performed to assess the abundance of glucose metabolism in the ischemic border and remote areas of the heart; fatty acid metabolism and ATP production levels were assessed by hematologic and biochemical analyses. The above experiments evaluated the cardioprotective effect of QSG on left anterior descending ligation-induced HF in rats and the mode of energy metabolism modulation. In vitro, a hypoxia-induced H9C2 model was established, mitochondrial damage was evaluated by flow cytometry, and nuclear translocation of hypoxia-inducible factor-1 α (HIF-1 α) was observed by immunofluorescence to assess the mechanism of energy metabolism regulation by QSG in hypoxic and normoxia conditions.
RESULTS:
QSG regulated the pattern of glucose and fatty acid metabolism in the border and remote areas of the heart via the HIF-1 α pathway, and improved cardiac function in HF rats. Specifically, QSG promoted HIF-1 α expression and entry into the nucleus at high levels of hypoxia (P<0.05), thereby promoting increased compensatory glucose metabolism; while reducing nuclear accumulation of HIF-1 α at relatively low levels of hypoxia (P<0.05), promoting the increased lipid metabolism.
CONCLUSIONS
QSG regulates the protein stability of HIF-1 α, thereby coordinating energy supply balance between the ischemic border and remote areas of the myocardium. This alleviates the energy metabolism disorder caused by ischemic injury.
Animals
;
Myocardial Infarction/physiopathology*
;
Male
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Rats, Sprague-Dawley
;
Glucose/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Energy Metabolism/drug effects*
;
Rats
;
Fatty Acids/metabolism*
;
Myocardium/pathology*
5.Hesperidin Suppressed Colorectal Cancer through Inhibition of Glycolysis.
Ke-Xiang SUN ; Wei-Shan TAN ; Hao-Yue WANG ; Jia-Min GAO ; Shu-Yun WANG ; Man-Li XIE ; Wan-Li DENG
Chinese journal of integrative medicine 2025;31(6):529-540
OBJECTIVE:
To explore the role of the natural compound hesperidin in glycolysis, the key ratelimiting enzyme, in colorectal cancer (CRC) cell lines.
METHODS:
In vitro, HCT116 and SW620 were treated with different doses of hesperidin (0-500 µmol/L), cell counting kit-8 and colone formation assays were utilized to detected inhibition effect of hesperidin on CRC cell lines. Transwell and wound healing assays were performed to detect the ability of hesperidin (0, 25, 50 and 75 µmol/L) to migrate CRC cells. To confirm the apoptotic-inducing effect of hesperidin, apoptosis and cycle assays were employed. Western blot, glucose uptake, and lactate production determination measurements were applied to determine inhibitory effects of hesperidin (0, 25 and 50 µmol/L) on glycolysis. In vivo, according to the random number table method, nude mice with successful tumor loading were randomly divided into vehicle, low-dose hesperidin (20 mg/kg) and high-dose hesperidin (60 mg/kg) groups, with 6 mice in each group. The body weights and tumor volumes of mice were recorded during 4-week treatment. The expression of key glycolysis rate-limiting enzymes was determined using Western blot, and glucose uptake and lactate production were assessed. Finally, protein interactions were probed with DirectDIA Quantitative Proteomics, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses.
RESULTS:
Hesperidin could inhibit CRC cell line growth (P<0.05 or P<0.01). Moreover, hesperidin presented an inhibitory effect on the migrating abilities of CRC cells. Hesperidin also promoted apoptosis and cell cycle alterations (P<0.05). The immunoblotting results manifested that hesperidin decreased the levels of hexokinase 2, glucose transporter protein 1 (GLUT1), GLUT3, L-lactate dehydrogenase A, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), PFKFB3, and pyruvate kinase isozymes M2 (P<0.01). It remarkably suppressed tumor xenograft growth in nude mice. GO and KEGG analyses showed that hesperidin treatment altered metabolic function.
CONCLUSION
Hesperidin inhibits glycolysis and is a potential therapeutic choice for CRC treatment.
Hesperidin/therapeutic use*
;
Colorectal Neoplasms/metabolism*
;
Glycolysis/drug effects*
;
Animals
;
Humans
;
Apoptosis/drug effects*
;
Mice, Nude
;
Cell Movement/drug effects*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Glucose/metabolism*
;
Cell Cycle/drug effects*
;
Mice, Inbred BALB C
;
Mice
;
HCT116 Cells
;
Lactic Acid
6.Efficacy and Safety of Juan Bi Pill with Add-on Methotrexate in Active Rheumatoid Arthritis: A 48-Week, Multicentre, Randomized, Double-Blind, Placebo-Controlled Trial.
Qing-Yun JIA ; Yi-Ru WANG ; Da-Wei SUN ; Jian-Chun MAO ; Luan XUE ; Xiao-Hua GU ; Xiang YU ; Xue-Mei PIAO ; Hao XU ; Qian-Qian LIANG
Chinese journal of integrative medicine 2025;31(2):99-107
OBJECTIVE:
To explore the efficacy and safety of Juan Bi Pill (JBP) in treatment of active rheumatoid arthritis (RA).
METHODS:
From February 2017 to May 2018, 115 participants from 4 centers were randomly divided into JBP group (57 cases) and placebo group (58 cases) in a 1:1 ratio using a random number table method. Participants received a dose of JBP (4 g, twice a day, orally) combined with methotrexate (MTX, 10 mg per week) or placebo (4 g, twice a day, orally) combined with MTX for 12 weeks. Participants were required with follow-up visits at 24 and 48 weeks, attending 7 assessment visits. Participants were undergo disease activity assessment 7 times (at baseline and 2, 4, 8, 12, 24, 48 weeks) and safety assessments 6 times (at baseline and 4, 8, 12, 24, 48 weeks). The primary endpoint was 28-joint Disease Activity Score (DAS28-ESR and DAS28-CRP). The secondary endpoints included American College of Rheumatology (ACR) criteria for 20% and 50% improvement (ACR20/50), Health Assessment Questionnaire Disability Index (HAQ-DI), clinical disease activity index (CDAI), visual analog scale (VAS), Short Form-36 (SF-36) score, Medial Outcomes Study (MOS) sleep scale score, serum erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), tender joint count, swollen joint count, and morning stiffness. The adverse reactions were observed during the treatment.
RESULTS:
After 12 weeks of treatment, DAS28-ESR and DAS28-CRP scores in both groups were lower than before treatment (both P<0.01), while the remission rate of DAS28-ESR and DAS28-CRP and low disease activity of JBP group were higher than those in the placebo group (both P<0.01). JBP demonstrated better efficacy on ACR20 and ACR50 compliance rate at 12 and 48 weeks comparing to placebo (all P<0.05). The CDAI and HAQ-DI score, pain VAS and global VAS change of RA patients and physicians, the serum ESR and CRP levels, and the number of tenderness and swelling joints were lower than before treatment at 4, 8, 12, 24, 48 weeks in both groups (P<0.05 or P<0.01), while the reduction of above indices in the JBP group was more obvious than those in the placebo group at 12 weeks (ESR and CRP, both P<0.05) or at 12 and 48 weeks (all P<0.01). There was no difference in adverse reactions between the 2 groups during treatment (P=0.75).
CONCLUSION
JBP combined with MTX could effectively reduce disease activity in patients with RA in active stage, reduce the symptoms of arthritis, and improve the quality of life, while ensuring safety, reliability, and fewer adverse effects. (Trial Registration: ClinicalTrials.gov, No. NCT02885597).
Humans
;
Arthritis, Rheumatoid/drug therapy*
;
Methotrexate/adverse effects*
;
Female
;
Double-Blind Method
;
Male
;
Middle Aged
;
Treatment Outcome
;
Drugs, Chinese Herbal/adverse effects*
;
Drug Therapy, Combination
;
Adult
;
Antirheumatic Agents/adverse effects*
;
Aged
7.TPMGD: A genomic database for the traditional medicines in Pakistan.
Rushuang XIANG ; Huihua WAN ; Wei SUN ; Baozhong DUAN ; Weiqian CHEN ; Xue CAO ; Sifan WANG ; Chi SONG ; Shilin CHEN ; Yan WANG ; Atia-Tul WAHAB ; M IQBAL CHOUDHARY ; Xiangxiao MENG
Chinese Herbal Medicines 2025;17(1):87-93
OBJECTIVE:
In Pakistan, traditional medicines are an important component of the medical system, with numerous varieties and great demands. However, due to the scattered resources and the lack of systematic collection and collation, adulteration of traditional Pakistani medicine (TPM) is common, which severely affects the safety of their medicinal use and the import and export trades. Therefore, it is urgent to systematically organize and unify the management of TPM and establish a set of standards and operable methods for the identification of TPM.
METHODS:
We collected and organized the information on 128 TPMs with regard to their medicinal parts, efficacy, usage, and genetic material, based on Pakistan Hamdard Pharmacopoeia of Eastern Medicine: Pharmaceutical Codex. The genetic information of TPM is summarized from national center for biotechnology information (NCBI) and global pharmacopoeia genome database (GPGD). Furthermore, we utilized bioinformatics technology to supplement the chloroplast genome (cp-genome) data of 12 TPMs. To build the web server, we used the Linux + Apache + MySQL + PHP (LAMP) system and constructed the webpage on a PHP: Hypertext Preprocessor (PHP) model view controller (MVC) framework.
RESULTS:
We constructed a new genomic database, the traditional Pakistani medicine genomic database (TPMGD). This database comprises five entries, namely homepage, medicinal species, species identification, basic local alignment search tool (BLAST), and download. Currently, TPMGD contains basic profiles of 128 TPMs and genetic information of 102 TPMs, including 140 cytochrome c oxidase subunit I (COI) sequences and 119 mitochondrial genome sequences from Bombyx mori, 1 396 internal transcribed spacer 2 (ITS2) sequences and 1 074 intergenic region (psbA-trnH) sequences specific to 92 and 83 plant species, respectively. Additionally, TPMGD includes 199 cp-genome sequences of 82 TPMs.
CONCLUSION
TPMGD is a multifunctional database that integrates species description, functional information inquiry, genetic information storage, molecular identification of TPM, etc. The database not only provides convenience for TPM information queries but also establishes the scientific basis for the medication safety, species identification, and resource protection of TPM.
8.An observational study on the clinical effects of in-line mechanical in-exsufflation in mechanical ventilated patients.
Bilin WEI ; Huifang ZHENG ; Xiang SI ; Wenxuan YU ; Xiangru CHEN ; Hao YUAN ; Fei PEI ; Xiangdong GUAN
Chinese Critical Care Medicine 2025;37(3):262-267
OBJECTIVE:
To evaluate the safety and clinical therapeutic effect of in-line mechanical in-exsufflation to assist sputum clearance in patients with invasive mechanical ventilation.
METHODS:
A prospective observational study was conducted at the department of critical care medicine, the First Affiliated Hospital of Sun Yat-sen University from April 2022 to May 2023. Patients who were invasively ventilated and treated with in-line mechanical in-exsufflation to assist sputum clearance were enrolled. Baseline data were collected. Sputum viscosity, oxygenation index, parameters of ventilatory function and respiratory mechanics, clinical pulmonary infection score (CPIS) and vital signs before and after day 1, 2, 3, 5, 7 of use of the in-line mechanical in-exsufflation were assessed and recorded. Statistical analyses were performed by using generalized estimating equation (GEE).
RESULTS:
A total of 13 invasively ventilated patients using in-line mechanical in-exsufflation were included, all of whom were male and had respiratory failure, with the main cause being cervical spinal cord injury/high-level paraplegia (38.46%). Before the use of the in-line mechanical in-exsufflation, the proportion of patients with sputum viscosity of grade III was 38.46% (5/13) and decreased to 22.22% (2/9) 7 days after treatment with in-line mechanical in-exsufflation. With the prolonged use of the in-line mechanical in-exsufflation, the patients' CPIS scores tended to decrease significantly, with a mean decrease of 0.5 points per day (P < 0.01). Oxygenation improved significantly, with the oxygenation index (PaO2/FiO2) increasing by a mean of 23.3 mmHg (1 mmHg ≈ 0.133 kPa) per day and the arterial partial pressure of oxygen increasing by a mean of 12.6 mmHg per day (both P < 0.01). Compared to baseline, the respiratory mechanics of the patients improved significantly 7 days after in-line mechanical in-exsufflation use, with a significant increase in the compliance of respiratory system (Cst) [mL/cmH2O (1 cmH2O ≈ 0.098 kPa): 55.6 (50.0, 58.0) vs. 40.9 (37.5, 50.0), P < 0.01], and both the airway resistance and driving pressure (DP) were significantly decreased [airway resistance (cmH2O×L-1×s-1): 9.6 (6.9, 10.5) vs. 12.0 (10.0, 13.0), DP (cmH2O): 9.0 (9.0, 12.0) vs. 11.0 (10.0, 15.0), both P < 0.01]. At the same time, no new lung collapse was observed during the treatment period. No significant discomfort was reported by patients, and there were no substantial changes in heart rate, systolic blood pressure, diastolic blood pressure, and mean arterial pressure before and after the in-line mechanical in-exsufflation treatment.
CONCLUSIONS
The combined use of the in-line mechanical in-exsufflation to assist sputum clearance in patients on invasive mechanical ventilation can effectively improve sputum characteristics, oxygenation and respiratory mechanics. The in-line mechanical in-exsufflation was well tolerated by the patients, with no treatment-related adverse events, which demonstrated its effectiveness and safety.
Humans
;
Prospective Studies
;
Respiration, Artificial/methods*
;
Respiratory Insufficiency/therapy*
;
Sputum
9.Independent and Interactive Effects of Air Pollutants, Meteorological Factors, and Green Space on Tuberculosis Incidence in Shanghai.
Qi YE ; Jing CHEN ; Ya Ting JI ; Xiao Yu LU ; Jia le DENG ; Nan LI ; Wei WEI ; Ren Jie HOU ; Zhi Yuan LI ; Jian Bang XIANG ; Xu GAO ; Xin SHEN ; Chong Guang YANG
Biomedical and Environmental Sciences 2025;38(7):792-809
OBJECTIVE:
To assess the independent and combined effects of air pollutants, meteorological factors, and greenspace exposure on new tuberculosis (TB) cases.
METHODS:
TB case data from Shanghai (2013-2018) were obtained from the Shanghai Center for Disease Control and Prevention. Environmental data on air pollutants, meteorological variables, and greenspace exposure were obtained from the National Tibetan Plateau Data Center. We employed a distributed-lag nonlinear model to assess the effects of these environmental factors on TB cases.
RESULTS:
Increased TB risk was linked to PM 2.5, PM 10, and rainfall, whereas NO 2, SO 2, and air pressure were associated with a reduced risk. Specifically, the strongest cumulative effects occurred at various lags: PM 2.5 ( RR = 1.166, 95% CI: 1.026-1.325) at 0-19 weeks; PM 10 ( RR = 1.167, 95% CI: 1.028-1.324) at 0-18 weeks; NO 2 ( RR = 0.968, 95% CI: 0.938-0.999) at 0-1 weeks; SO 2 ( RR = 0.945, 95% CI: 0.894-0.999) at 0-2 weeks; air pressure ( RR = 0.604, 95% CI: 0.447-0.816) at 0-8 weeks; and rainfall ( RR = 1.404, 95% CI: 1.076-1.833) at 0-22 weeks. Green space exposure did not significantly impact TB cases. Additionally, low temperatures amplified the effect of PM 2.5 on TB.
CONCLUSION
Exposure to PM 2.5, PM 10, and rainfall increased the risk of TB, highlighting the need to address air pollutants for the prevention of TB in Shanghai.
China/epidemiology*
;
Humans
;
Air Pollutants/analysis*
;
Tuberculosis/epidemiology*
;
Incidence
;
Meteorological Concepts
;
Particulate Matter/adverse effects*
;
Environmental Exposure
;
Male
;
Female
;
Adult
;
Air Pollution
;
Middle Aged
10.Determination of 19 components in Microctis Folium from different production areas based on UPLC-MS/MS
Min-you HE ; Li-wei WANG ; Lin LIU ; Po-yu ZHANG ; Jin-quan LAN ; Xin-ya WAN ; Zhen-yu LI ; Xiang-dong CHEN ; Dong-mei SUN
Acta Pharmaceutica Sinica 2024;59(5):1374-1381
The paper is to establish an UPLC-MS/MS method for the simultaneous determination of 19 components in Microctis Folium from different production areas. The 50% methanol was used as extraction solvent. The Agilent ZORBAX SB C18 (150 mm × 2.1 mm, 1.8 μm) column was used; mobile phase was acetonitrile - 0.1% acetic acid with gradient elution, flow rate was 0.3 mL·min-1, colume temperature was 30 ℃, and the injection volume was 2 μL; electrospray ionizaton source was used and detected in negative ion mode. The results showed that the established UPLC-MS/MS method could well separate the 19 components, and the methodological investigation results of 19 components were good. By means of orthogonal partial least squares discriminant analysis (OPLS-DA), 28 batches of Microctis Folium samples from different production areas can be divided into three categories, Guangdong, Guangxi and Hainan are each classified into one category, and 10 signature compounds which affecting the quality differences of different production areas were screened out. The established method is accurate, reliable, sensitive and reproducible. It can provide a basis for the establishment of the quality standard of Microctis Folium, as well as for safety and quality research.

Result Analysis
Print
Save
E-mail