1.Evolution and genetic variation of HA and NA genes of H1N1 influenza virus in Shanghai, 2024
Lufang JIANG ; Wei CHU ; Xuefei QIAO ; Pan SUN ; Senmiao DENG ; Yuxi WANG ; Xue ZHAO ; Jiasheng XIONG ; Xihong LYU ; Linjuan DONG ; Yaxu ZHENG ; Yinzi CHEN ; Chenyan JIANG ; Chenglong XIONG ; Jian CHEN
Shanghai Journal of Preventive Medicine 2025;37(9):719-724
ObjectiveTo analyze the evolutionary characteristics and genetic variations of the HA (hemagglutinin) and NA (neuraminidase) genes of influenza A(H1N1) viruses in Shanghai during 2024, to investigate their transmission patterns, and to evaluate their potential impact on vaccine effectiveness. MethodsFrom January to October 2024, throat swab specimens were collected from influenza like illness (ILI) patients at 4 hospitals in Shanghai. Real-time fluorescence ploymerase chain reaction (RT-PCR) was used for virus detection and isolation of H1N1 influenza viruses. Forty influenza A(H1N1) virus strains were sequenced using Illumina NovaSeq 6000 platform, followed by phylogenetic analyses, genetic distance analysis, and amino acid variation analyses of HA and NA genes. ResultsPhylogenetic tree of the HA and NA genes revealed that the 40 influenza A(H1N1) virus strains circulating in Shanghai in 2024 exhibited no significant geographic clustering, with a broad origin of strains and complex transmission chains. Genetic distance analyses demonstrated that the average intra-group genetic distances of HA and NA genes among the Shanghai strains were 0.005 1±0.000 6 and 0.004 6±0.000 6, respectively, which were comparable to or higher than those observed in global surveillance strains. Both HA and NA genes displayed frequent mutations. Compared to the 2023‒2024 and 2024‒2025 Northern Hemisphere A(H1N1) vaccine strains (WHO-recommended), the HA proteins of 40 Shanghai strains exhibited amino acid substitutions at positions 120, 137, 142, 169, 216, 223, 260, 277, 356 and 451, with critical mutations at positions 137 and 142 located within the Ca2 antigenic determinant. Furthermore, mutations in the NA protein were observed at positions 13, 50, 200, 257, 264, 339 and 382. ConclusionThe genetic background of the 2024 Shanghai influenza A(H1N1) virus strains is complex and diverse, and antigenic variation may affect vaccine effectiveness. Therefore, it is recommended to enhance genomic surveillance of influenza viruses, evaluate vaccine suitability, and implement more targeted prevention and control strategies against imported influenza viruses.
2.Integrated spatial metabolomics and transcriptomics decipher the hepatoprotection mechanisms of wedelolactone and demethylwedelolactone on non-alcoholic fatty liver disease
Chen PANPAN ; Zhu ZIHAN ; Geng HAOYUAN ; Cui XIAOQING ; Han YUHAO ; Wang LEI ; Zhang YAQI ; Lu HENG ; Wang XIAO ; Zhang YUN ; Sun CHENGLONG
Journal of Pharmaceutical Analysis 2024;14(4):552-561
Eclipta prostrata L.has been used in traditional medicine and known for its liver-protective properties for centuries.Wedelolactone(WEL)and demethylwedelolactone(DWEL)are the major coumarins found in E.prostrata L.However,the comprehensive characterization of these two compounds on non-alcoholic fatty liver disease(NAFLD)still remains to be explored.Utilizing a well-established zebrafish model of thioacetamide(TAA)-induced liver injury,the present study sought to investigate the impacts and mechanisms of WEL and DWEL on NAFLD through integrative spatial metabolomics with liver-specific transcriptomics analysis.Our results showed that WEL and DWEL significantly improved liver function and reduced the accumulation of fat in the liver.The biodistributions and metabolism of these two compounds in whole-body zebrafish were successfully mapped,and the discriminatory endogenous metabolites reversely regulated by WEL and DWEL treatments were also characterized.Based on spatial metabolomics and transcriptomics,we identified that steroid biosynthesis and fatty acid metabolism are mainly involved in the hepatoprotective effects of WEL instead of DWEL.Our study unveils the distinct mechanism of WEL and DWEL in ameliorating NAFLD,and presents a"multi-omics"platform of spatial metabolomics and liver-specific transcriptomics to develop highly effective compounds for further improved therapy.
3.Network pharmacology prediction to discover the potential pharmacological action mechanism of Rhizoma Dioscoreae for liver regeneration
Wei LIU ; Wenyu WANG ; Chenglong TIAN ; Ming-Zhong SUN ; Shuqing LIU ; Qinlong LIU
The Korean Journal of Physiology and Pharmacology 2024;28(5):479-491
Improving liver regeneration (LR) remains a medical issue, and there is currently a lack of safe and effective drugs for LR. Rhizoma Dioscoreae (SanYak, SY) is a traditional Chinese medicine. However, the underlying action mechanism of SY treatment for LR is yet to be fully elucidated. To explore the mechanism by which SY affects LR, we have conducted a series of methods for network pharmacological analysis, molecular docking, and in vivo experimental validation in mice. Overall, 9 compounds and 30 predicted target genes of SY were found to be associated with the therapeutic effects of LR. Compared with the model group, hematoxylin and eosin staining revealed that the mice with preoperative drug intervention possessed fewer postoperative hepatocyte bubbles and relatively regular morphology. Furthermore, the serum alanine transaminase and aspartate aminotransferase levels were reduced, immunohistochemistry revealed elevated proliferating cell nuclear antigen positivity rate, and Western blotting demonstrated that the phospho-protein kinase B (AKT)/AKT ratio was downregulated and that vascular endothelial growth factor A (VEGFA) expression levels were upregulated. This study explored dioscin, the main active ingredient of SY, and its potential therapeutic effects on LR. It repairs damaged liver following surgery and promotes liver cell proliferation. The action mechanism comprises reducing AKT phosphorylation levels and upregulating VEGFA expression levels. Thus, this study provides a new direction for further research on the mechanism of SY promoting LR.
4.Network pharmacology prediction to discover the potential pharmacological action mechanism of Rhizoma Dioscoreae for liver regeneration
Wei LIU ; Wenyu WANG ; Chenglong TIAN ; Ming-Zhong SUN ; Shuqing LIU ; Qinlong LIU
The Korean Journal of Physiology and Pharmacology 2024;28(5):479-491
Improving liver regeneration (LR) remains a medical issue, and there is currently a lack of safe and effective drugs for LR. Rhizoma Dioscoreae (SanYak, SY) is a traditional Chinese medicine. However, the underlying action mechanism of SY treatment for LR is yet to be fully elucidated. To explore the mechanism by which SY affects LR, we have conducted a series of methods for network pharmacological analysis, molecular docking, and in vivo experimental validation in mice. Overall, 9 compounds and 30 predicted target genes of SY were found to be associated with the therapeutic effects of LR. Compared with the model group, hematoxylin and eosin staining revealed that the mice with preoperative drug intervention possessed fewer postoperative hepatocyte bubbles and relatively regular morphology. Furthermore, the serum alanine transaminase and aspartate aminotransferase levels were reduced, immunohistochemistry revealed elevated proliferating cell nuclear antigen positivity rate, and Western blotting demonstrated that the phospho-protein kinase B (AKT)/AKT ratio was downregulated and that vascular endothelial growth factor A (VEGFA) expression levels were upregulated. This study explored dioscin, the main active ingredient of SY, and its potential therapeutic effects on LR. It repairs damaged liver following surgery and promotes liver cell proliferation. The action mechanism comprises reducing AKT phosphorylation levels and upregulating VEGFA expression levels. Thus, this study provides a new direction for further research on the mechanism of SY promoting LR.
5.Network pharmacology prediction to discover the potential pharmacological action mechanism of Rhizoma Dioscoreae for liver regeneration
Wei LIU ; Wenyu WANG ; Chenglong TIAN ; Ming-Zhong SUN ; Shuqing LIU ; Qinlong LIU
The Korean Journal of Physiology and Pharmacology 2024;28(5):479-491
Improving liver regeneration (LR) remains a medical issue, and there is currently a lack of safe and effective drugs for LR. Rhizoma Dioscoreae (SanYak, SY) is a traditional Chinese medicine. However, the underlying action mechanism of SY treatment for LR is yet to be fully elucidated. To explore the mechanism by which SY affects LR, we have conducted a series of methods for network pharmacological analysis, molecular docking, and in vivo experimental validation in mice. Overall, 9 compounds and 30 predicted target genes of SY were found to be associated with the therapeutic effects of LR. Compared with the model group, hematoxylin and eosin staining revealed that the mice with preoperative drug intervention possessed fewer postoperative hepatocyte bubbles and relatively regular morphology. Furthermore, the serum alanine transaminase and aspartate aminotransferase levels were reduced, immunohistochemistry revealed elevated proliferating cell nuclear antigen positivity rate, and Western blotting demonstrated that the phospho-protein kinase B (AKT)/AKT ratio was downregulated and that vascular endothelial growth factor A (VEGFA) expression levels were upregulated. This study explored dioscin, the main active ingredient of SY, and its potential therapeutic effects on LR. It repairs damaged liver following surgery and promotes liver cell proliferation. The action mechanism comprises reducing AKT phosphorylation levels and upregulating VEGFA expression levels. Thus, this study provides a new direction for further research on the mechanism of SY promoting LR.
6.Clinical efficacy of transcatheter arterial chemoembolization combined with lenvatinib and camrelizumab in the treatment of advanced hepatocellular carcinoma
Xuexian ZHANG ; Yuhan DING ; Wei LI ; Qingwei LI ; Jun ZHANG ; Dan DUAN ; Yongle LI ; Jian LONG ; Jidong YANG ; Chenglong ZHANG ; Peng WU ; Huijuan SUN ; Geng WU
Journal of Interventional Radiology 2024;33(1):57-62
Objective To evaluate the safety and efficacy of transcatheter arterial chemoembolization(TACE)combined with lenvatinib and camrelizumab in the treatment of advanced hepatocellular carcinoma(HCC).Methods The clinical data of a total of 63 patients with advanced HCC,who received TACE combined with lenvatinib and camrelizumab(triple therapy)or TACE combined with lenvatinib(dual therapy)at the Jingmen Municipal People's Hospital of China between April 2020 and December 2021,were retrospectively analyzed.Triple therapy group had 30 patients,and dual therapy group had 33 patients.The post-treatment tumor response,disease progression-free survival(PFS),overall survival(OS),and the incidence of adverse drug reactions were recorded.Results The median follow-up period of the two groups was 14 months(range of 4-26 months).Compared with the dual therapy group,in the triple therapy group the objective response rate(ORR)was remarkably higher(83.3%vs.57.6%,P=0.026),the disease control rate(DCR)was obviously higher(93.3%vs.69.7%,P=0.039),the median PFS was significantly longer(8.0 months vs.5.0 months,P<0.01),and the median OS was strikingly longer(24.0 months vs.12.0 months,P=0.004).No statistically significant difference in the incidence of adverse drug reactions existed between the two groups(P>0.05).Conclusion For the treatment of advanced HCC,TACE combined with lenvatinib and camrelizumab is clinically safe and effective.(J Intervent Radiol,2024,32:57-62)
7.Network pharmacology prediction to discover the potential pharmacological action mechanism of Rhizoma Dioscoreae for liver regeneration
Wei LIU ; Wenyu WANG ; Chenglong TIAN ; Ming-Zhong SUN ; Shuqing LIU ; Qinlong LIU
The Korean Journal of Physiology and Pharmacology 2024;28(5):479-491
Improving liver regeneration (LR) remains a medical issue, and there is currently a lack of safe and effective drugs for LR. Rhizoma Dioscoreae (SanYak, SY) is a traditional Chinese medicine. However, the underlying action mechanism of SY treatment for LR is yet to be fully elucidated. To explore the mechanism by which SY affects LR, we have conducted a series of methods for network pharmacological analysis, molecular docking, and in vivo experimental validation in mice. Overall, 9 compounds and 30 predicted target genes of SY were found to be associated with the therapeutic effects of LR. Compared with the model group, hematoxylin and eosin staining revealed that the mice with preoperative drug intervention possessed fewer postoperative hepatocyte bubbles and relatively regular morphology. Furthermore, the serum alanine transaminase and aspartate aminotransferase levels were reduced, immunohistochemistry revealed elevated proliferating cell nuclear antigen positivity rate, and Western blotting demonstrated that the phospho-protein kinase B (AKT)/AKT ratio was downregulated and that vascular endothelial growth factor A (VEGFA) expression levels were upregulated. This study explored dioscin, the main active ingredient of SY, and its potential therapeutic effects on LR. It repairs damaged liver following surgery and promotes liver cell proliferation. The action mechanism comprises reducing AKT phosphorylation levels and upregulating VEGFA expression levels. Thus, this study provides a new direction for further research on the mechanism of SY promoting LR.
8.Network pharmacology prediction to discover the potential pharmacological action mechanism of Rhizoma Dioscoreae for liver regeneration
Wei LIU ; Wenyu WANG ; Chenglong TIAN ; Ming-Zhong SUN ; Shuqing LIU ; Qinlong LIU
The Korean Journal of Physiology and Pharmacology 2024;28(5):479-491
Improving liver regeneration (LR) remains a medical issue, and there is currently a lack of safe and effective drugs for LR. Rhizoma Dioscoreae (SanYak, SY) is a traditional Chinese medicine. However, the underlying action mechanism of SY treatment for LR is yet to be fully elucidated. To explore the mechanism by which SY affects LR, we have conducted a series of methods for network pharmacological analysis, molecular docking, and in vivo experimental validation in mice. Overall, 9 compounds and 30 predicted target genes of SY were found to be associated with the therapeutic effects of LR. Compared with the model group, hematoxylin and eosin staining revealed that the mice with preoperative drug intervention possessed fewer postoperative hepatocyte bubbles and relatively regular morphology. Furthermore, the serum alanine transaminase and aspartate aminotransferase levels were reduced, immunohistochemistry revealed elevated proliferating cell nuclear antigen positivity rate, and Western blotting demonstrated that the phospho-protein kinase B (AKT)/AKT ratio was downregulated and that vascular endothelial growth factor A (VEGFA) expression levels were upregulated. This study explored dioscin, the main active ingredient of SY, and its potential therapeutic effects on LR. It repairs damaged liver following surgery and promotes liver cell proliferation. The action mechanism comprises reducing AKT phosphorylation levels and upregulating VEGFA expression levels. Thus, this study provides a new direction for further research on the mechanism of SY promoting LR.
9.Platelet membrane biomimetic nanomedicine induces dual glutathione consumption for enhancing cancer radioimmunotherapy.
Xiaopeng LI ; Yang ZHONG ; Pengyuan QI ; Daoming ZHU ; Chenglong SUN ; Nan WEI ; Yang ZHANG ; Zhanggui WANG
Journal of Pharmaceutical Analysis 2024;14(12):100935-100935
Radiotherapy (RT) is one of the most common treatments for cancer. However, intracellular glutathione (GSH) plays a key role in protecting cancer from radiation damage. Herein, we have developed a platelet membrane biomimetic nanomedicine (PMD) that induces double GSH consumption to enhance tumor radioimmunotherapy. This biomimetic nanomedicine consists of an external platelet membrane and internal organic mesoporous silica nanoparticles (MON) loaded with 2-deoxy-D-glucose (2-DG). Thanks to the tumor-targeting ability of the platelet membranes, PMD can target and aggregate to the tumor site, which is internalized by tumor cells. Within tumor cells overexpressing GSH, MON reacts with GSH to degrade and release 2-DG. This step initially depletes the intracellular GSH content. The subsequent release of 2-DG inhibits glycolysis and adenosine triphosphate (ATP) production, ultimately leading to secondary GSH consumption. This nanodrug combines dual GSH depletion, starvation therapy, and RT to promote immunogenic cell death and stimulate the systemic immune response. In the bilateral tumor model in vivo, distal tumor growth was also well suppressed. The proportion of mature dendritic cells (DC) and CD8+ T cells in the mice was increased. This indicates that PMD can promote anti-tumor radioimmunotherapy and has good prospects for clinical application.
10.Comparison of the clinical efficacy of percutaneous vertebroplasty and biopsy by unilateral and bilateral pedicle approaches for the treatment of vertebral metastasis
Jinbo XU ; Chenglong LI ; Shumao SUN ; Jian YANG ; Qianfeng XU
Chinese Journal of Postgraduates of Medicine 2023;46(4):297-300
Objective:To retrospectively compare the clinical efficacy of percutaneous vertebroplasty and biopsy by unilateral and bilateral pedicle approaches for the treatment of vertebral metastasis.Methods:From June 2020 to July 2022, a total of 82 patients with vertebral metastasis underwent percutaneous vertebroplasty and biopsy treated in Linyi Cancer Hospital were enrolled, 39 patients with 57 vertebral bodies were performed by unilateral pedicle approach (unilateral group) and 43 patients with 52 vertebral bodies were performed by bilateral pedicle approaches (bilateral group), used bone cement filling vertebral bodies after biopsy. The clinical efficacy and the positive rate of biopsy were compared between the two groups.Results:Both groups experienced significant pain relief in the Visual Analog Scale (VAS) score and improvement in the Oswestry Disability Index (ODI) score after operation ( P<0.05), but there were no significant differences between the two groups ( P>0.05). The operative time for a single vertebra, volume of bone cement in unilateral group were less than those in the bilateral group:(44.81 ± 13.01) min vs. (31.84 ± 11.87) min, (4.87 ± 0.92) ml vs. (4.18 ± 0.90) ml, there were significant differences ( P<0.05). There were no significant differences in the incidence of bone cement leakage and the positive rate of biopsy between both groups ( P>0.05). Conclusions:Percutaneous vertebroplasty and biopsy by unilateral and bilateral pedicle approaches are significant improvement for symptoms and functions of patients with vertebral metastasis. The clinical efficacy and the positive rate of biopsy are similar. But the former has easier operation procedure, shorter operative time and less volume of bone cement.

Result Analysis
Print
Save
E-mail