1.The role of microglia activated by the deletion of immune checkpoint receptor CD200R1 gene in a mouse model of Parkinson's disease.
Jia-Li GUO ; Tao-Ying HUANG ; Zhen ZHANG ; Kun NIU ; Xarbat GONGBIKAI ; Xiao-Li GONG ; Xiao-Min WANG ; Ting ZHANG
Acta Physiologica Sinica 2025;77(1):13-24
The study aimed to investigate the effect of the CD200R1 gene deletion on microglia activation and nigrostriatal dopamine neuron loss in the Parkinson's disease (PD) process. The CRISPR-Cas9 technology was applied to construct the CD200R1-/- mice. The primary microglia cells of wild-type and CD200R1-/- mice were cultured and treated with bacterial lipopolysaccharide (LPS). Microglia phagocytosis level was assessed by a fluorescent microsphere phagocytosis assay. PD mouse model was prepared by nigral stereotaxic injection of recombinant adeno-associated virus vector carrying human α-synuclein (α-syn). The changes in the motor behavior of the mice with both genotypes were evaluated by cylinder test, open field test, and rotarod test. Immunohistochemical staining was used to assess the loss of dopamine neurons in substantia nigra. Immunofluorescence staining was used to detect the expression level of CD68 (a key molecule involved in phagocytosis) in microglia. The results showed that CD200R1 deletion markedly enhanced LPS-induced phagocytosis in vitro by the microglial cells. In the mouse model of PD, CD200R1 deletion exacerbated motor behavior impairment and dopamine neuron loss in substantia nigra. Fluorescence intensity analysis results revealed a significant increase in CD68 expression in microglia located in the substantia nigra of CD200R1-/- mice. The above results suggest that CD200R1 deletion may further activates microglia by promoting microglial phagocytosis, leading to increased loss of the nigrostriatal dopamine neurons in the PD model mice. Therefore, targeting CD200R1 could potentially serve as a novel therapeutic target for the treatment of early-stage PD.
Animals
;
Microglia/physiology*
;
Mice
;
Phagocytosis
;
Parkinson Disease/genetics*
;
Disease Models, Animal
;
Receptors, Cell Surface/physiology*
;
Dopaminergic Neurons/pathology*
;
Antigens, CD/metabolism*
;
Gene Deletion
;
Substantia Nigra
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Cells, Cultured
;
Male
;
alpha-Synuclein
;
CD68 Molecule
;
Orexin Receptors
2.Exercise preconditioning alleviates motor deficits in MPTP-induced Parkinsonian mice by improving mitochondrial function.
Miao-Miao XU ; Dan-Ting HU ; Qiao ZHANG ; Xiao-Guang LIU ; Zhao-Wei LI ; Li-Ming LU
Acta Physiologica Sinica 2025;77(3):419-431
Parkinson's disease (PD) is a common neurodegenerative disorder mainly related to mitochondrial dysfunction of dopaminergic neurons in the midbrain substantia nigra. This study aimed to investigate the effects of exercise preconditioning on motor deficits and mitochondrial function in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Eight-week-old male C57BL/6J mice were randomly divided into four groups: sedentary + saline (SS), sedentary + MPTP (SM), exercise + saline (ES), and exercise + MPTP (EM) groups. Mice in the ES and EM groups received 4 weeks of treadmill training, and then SM and EM groups were treated with MPTP for 5 days. Motor function was assessed by behavioral tests, and morphological and functional changes in dopaminergic neurons and mitochondria in the substantia nigra of the midbrain were evaluated using immunohistochemistry, Western blot, and transmission electron microscopy technology. The results showed that, compared with the SM group, the EM group exhibited significantly improved motor ability, up-regulated protein expression levels of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the midbrain, and down-regulated protein expression of α-synuclein (α-Syn) in the mitochondria of substantia nigra. Compared with the SM group, the EM group showed up-regulated protein expression levels of mitochondrial fusion proteins, including optical atrophy protein 1 (OPA1) and mitofusin 2 (MFN2), and biogenesis-related proteins, including peroxisome proliferator activated receptor gamma coactivator 1α (PGC-1α) and mitochondrial transcription factor A (TFAM), while the protein expression levels of dynamin-related protein 1 (DRP1) and mitochondrial fission protein 1 (FIS1) were significantly down-regulated. Compared with the SM group, the EM group showed significantly reduced damage to substantia nigra mitochondria, restored mitochondrial membrane potential and ATP production, and decreased levels of reactive oxygen species (ROS). These results suggest that 4-week treadmill pre-training can alleviate MPTP-induced motor impairments in PD mice by improving mitochondrial function, providing a theoretical basis for early exercise-based prevention of PD.
Animals
;
Male
;
Physical Conditioning, Animal/physiology*
;
Mice
;
Mice, Inbred C57BL
;
Mitochondria/physiology*
;
Dopaminergic Neurons
;
MPTP Poisoning/physiopathology*
;
Substantia Nigra
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
3.Link Brain-Wide Projectome to Neuronal Dynamics in the Mouse Brain.
Xiang LI ; Yun DU ; Jiang-Feng HUANG ; Wen-Wei LI ; Wei SONG ; Ruo-Nan FAN ; Hua ZHOU ; Tao JIANG ; Chang-Geng LU ; Zhuang GUAN ; Xiao-Fei WANG ; Hui GONG ; Xiang-Ning LI ; Anan LI ; Ling FU ; Yan-Gang SUN
Neuroscience Bulletin 2024;40(11):1621-1634
Knowledge about the neuronal dynamics and the projectome are both essential for understanding how the neuronal network functions in concert. However, it remains challenging to obtain the neural activity and the brain-wide projectome for the same neurons, especially for neurons in subcortical brain regions. Here, by combining in vivo microscopy and high-definition fluorescence micro-optical sectioning tomography, we have developed strategies for mapping the brain-wide projectome of functionally relevant neurons in the somatosensory cortex, the dorsal hippocampus, and the substantia nigra pars compacta. More importantly, we also developed a strategy to achieve acquiring the neural dynamic and brain-wide projectome of the molecularly defined neuronal subtype. The strategies developed in this study solved the essential problem of linking brain-wide projectome to neuronal dynamics for neurons in subcortical structures and provided valuable approaches for understanding how the brain is functionally organized via intricate connectivity patterns.
Animals
;
Neurons/physiology*
;
Mice
;
Brain/physiology*
;
Mice, Inbred C57BL
;
Somatosensory Cortex/physiology*
;
Neural Pathways/physiology*
;
Hippocampus/physiology*
;
Mice, Transgenic
;
Male
;
Brain Mapping
;
Nerve Net/physiology*
;
Substantia Nigra/physiology*
;
Tomography, Optical/methods*
4.Impact of dopamine receptor modulation on reduced anxiety-like behavior in neonatal rats after hypoxic-ischemic brain damage.
Hui-Kang TAO ; Qin TANG ; Jin-Jin DAI ; Yuan-Yuan LI ; Ming-Yan HEI
Chinese Journal of Contemporary Pediatrics 2014;16(10):1045-1050
OBJECTIVETo observe the long-term changes in anxiety-like behavior and tyrosine hydroxylase (TH) expression in the substantia nigra (SN) after hypoxic-ischemic brain damage (HIBD) in a neonatal rat model and to further explore the relationship between dopamine (DA) level and long-term anxiety-like behavior using the DA receptor (DAR) antagonist.
METHODSSeven-day-old (P7) neonatal Sprague-Dawley (SD) rats were randomized into normal control, sham-operated, HIBD and HIBD+DAR antagonist groups. HIBD model was prepared by ligating the right common carotid artery and 8% hypoxia exposure. The rats in the sham-operated group were sham-operated and were not subjected to right common carotid artery ligation and hypoxia exposure. The DAR antagonist was injected intraperitoneally before and after inducing HIBD. The same amount of normal saline was given to the other three groups as a control. Anxiety-like behavior was evaluated by elevated plus maze test, and TH expression in the SN was measured by immunohistochemistry on P14, P21, and P28.
RESULTSOn P21 and P28, the time spent in the open arms and the percentage of open arms entries in the HIBD group were significantly increased compared with those in the normal control, sham-operated and HIBD+DAR antagonist groups (P<0.05); in addition, the HIBD+DAR antagonist group showed a significantly longer time spent in the open arms than the normal control group (P<0.05). On P14, P21, and P28, TH expression in the HIBD and HIBD+DAR antagonist groups was significantly lower than that in the normal control and sham-operated groups, and TH level in the HIBD group was significantly lower than that in the HIBD+DAR antagonist group (P<0.05).
CONCLUSIONSDAR antagonist allows the restoration of anxiety-like behavior and alleviates the damage to dopaminergic neurons in SD rats after HIBD.
Animals ; Animals, Newborn ; Anxiety ; etiology ; prevention & control ; Dopamine Antagonists ; therapeutic use ; Hypoxia-Ischemia, Brain ; complications ; Maze Learning ; Rats ; Rats, Sprague-Dawley ; Receptors, Dopamine ; physiology ; Substantia Nigra ; enzymology ; Tyrosine 3-Monooxygenase ; analysis
5.Aberrant plasticity and "learned" motor inhibition in Parkinson's disease.
Acta Physiologica Sinica 2012;64(5):543-549
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder characterized by severe loss of substantia nigra dopamine (DA) neurons. The target region of substantia nigra DA neurons is the dorsal striatum. According to the classic model, activation of DA receptors on striatal medium spiny neurons (MSNs) modulates their intrinsic excitability. Activation of D1 receptors makes MSNs in the direct "Go" pathway more excitable, whereas activation of D2 receptors makes MSNs in the indirect "NoGo" pathway less excitable. Therefore increased DA increases the responsiveness of the Go pathway while decreases the responsiveness of the NoGo pathway. Both mechanisms increase motor output. Conversely, diminished DA will favor the inhibitory NoGo pathway. Therefore, DA has direct, "on-line" effect on motor performance. However, in addition to modulating the intrinsic excitability of MSNs "on-line", DA also modulates corticostriatal plasticity, therefore could potentially produce cumulative and long-lasting changes in corticostriatal throughput. Studies in my lab suggest that DA blockade leads to both direct motor performance impairment and D2 receptor dependent NoGo learning ("learned" motor inhibition) that gradually deteriorates motor performance. NoGo learning is experience dependent and task specific. It is different from blocked learning since NoGo learning impairs future performance even after DA is restored. More recent data from my lab suggest that NoGo learning in the absence of DA arises from increased LTP at the indirect pathway corticostriatal synapses and contributes significantly to PD-like motor symptoms. Our data and hypotheses suggest a novel therapeutic strategy for PD that targets directly signaling molecules for corticostriatal plasticity (e.g. the cAMP pathway and downstream signaling molecules) and prevents aberrant plasticity under conditions of DA denervation.
Corpus Striatum
;
cytology
;
Dopamine
;
physiology
;
Dopaminergic Neurons
;
pathology
;
Humans
;
Neuronal Plasticity
;
Parkinson Disease
;
physiopathology
;
Receptors, Dopamine D1
;
physiology
;
Receptors, Dopamine D2
;
physiology
;
Substantia Nigra
;
pathology
6.The neuroprotective effects of lesion and high frequency stimulation of the subthalamic nucleus on the substantia nigra neurons.
Yu MA ; Dong-ming GAO ; Jian-guo ZHANG ; Huan-guang LIU
Chinese Journal of Applied Physiology 2009;25(3):387-390
AIMTo investigate the neuroprotective effects of lesion and high frequency stimulation(HFS) of the subthalamic nucleus (SIN) on the substantia nigra pars compacta(SNc) neurons and its probable mechanism.
METHODSThe PD models were induced by unilateral administration of 6-hydroxydopamine into right substantia nigra in rats. After the high-frequence stimulation to SIN and injection of ibotenic acid to STN on PD rats, the changes of behavior were observed. The substantia nigra neurons were detected by using special-dyeing, TUNEL techniques and immunohistochemistry methods.
RESULTSIn the stimulation group, the apoptotic rate was significantly lower than PD model group and lesion group (P < 0.05). Compared with normal rats, model group and lesion one had the similar results of expression of Bcl-2, Bax and their ratio, which were lower expression of Bcl-2, higher expression of Bax and the decrease of their ratio (P < 0.05). In the stimulation group, the expression of Bcl-2 and Bcl-2/Bax were much higher than model group and lesion group. The number of apoptotic neurons of rats in lesion group was smaller than model ones (P < 0.05), but there was no significant difference in expression of Bcl-2, Bax and their ratio (P > 0.05).
CONCLUSIONLesion or HFS of STN have the neuroprotective effects on SNc neurons of PD rats, and HFS has a better long-term effect.
Animals ; Electric Stimulation ; Male ; Neurons ; physiology ; Oxidopamine ; Parkinson Disease, Secondary ; chemically induced ; physiopathology ; therapy ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Rats ; Rats, Sprague-Dawley ; Substantia Nigra ; physiopathology ; Subthalamic Nucleus ; physiopathology ; bcl-2-Associated X Protein ; metabolism
7.Effect of stimulation of STN on the firing activities of the SNr neurons in rats.
Xiao-li ZHANG ; Dong-ming GAO ; Huan LIU ; Ning KANG ; Lian ZHAO
Chinese Journal of Applied Physiology 2009;25(2):233-236
AIMTo research the spontaneous firing activities during different-frequency stimulation of subthalamic nucleus and microelectrophoresis GABA, Glu and their antagons respectively, approaching the mechanism of DBS in the treatment of Parkinson's disease further.
METHODSUsing extracellular recording to investigate the effect of different-frequency stimulation of STN and microelectrophoresis several drugs on the spontaneous firing activities of the SNr neurons.
RESULTSFor STN stimulation at low frequency, there was no difference on the spontaneous firing activities of SNr neurons between pro-stimulation and meta-stimulation (P > 0.05). With the increasing of stimulation frequency, most of the SNr neurons were inhibited. While during the STN stimulation frequency at high-frequency, the firing rates of inhibited SNr neurons were changed (P < 0.05). Glu had catatonic excitement effect on the SNr neurons, whereas GABA had tonic inhibition effect. 80% of SNr neurons which were inhibited by STN-HFS were not inhibited by STN-HFS on the basis of excitatory effect of BIC.
CONCLUSIONTo treat the motor symptoms of PD, when SIN is selected as the target nucleus, the electrical stimulation with high-frequency should be chosen. It is possible that SIN-HFS modulate the activity of SNr by inhibitory effect of GABA predominantly.
Action Potentials ; physiology ; Animals ; Electric Stimulation ; Electrophoresis ; methods ; Glutamic Acid ; administration & dosage ; pharmacology ; Male ; Neurons ; physiology ; Parkinson Disease ; physiopathology ; therapy ; Rats ; Rats, Sprague-Dawley ; Substantia Nigra ; physiology ; Subthalamic Nucleus ; physiology ; gamma-Aminobutyric Acid ; administration & dosage ; pharmacology
8.Effects of unilateral lesion of the nigrostriatal pathway by 6-OHDA on the neuronal activities of the pedunculopontine nucleus and the ventrolateral thalamic nucleus.
Huan LIU ; Jing ZHANG ; Dong-ming GAO
Chinese Journal of Applied Physiology 2009;25(2):212-216
AIMTo investigate the changes in neuronal activities of the pedunculopontine nucleus (PPN) and the ventrolateral thalamic nucleus (VL) after unilateral 6-hydroxydopamin (6-OHDA) lesioning of the striatum in rats.
METHODSExtracellular single-unit recordings were perin normal rats and 6-OHDA lesioned rats to observe the firing rate and firing pattern occurring in PPN and VL neurons.
RESULTSThe firing rate of PPN neurones significantly increased from (8.31 +/- 0.62) Hz in normal rats to (10.70 +/- 0.85) Hz in 6-OHDA lesioned rats. The firing pattern changed towards more irregular and bursty when compared with the normal rats, with the firing rate increasing in regular pattern. The firing rate of VL neurones in normal rats and 6-OHDA lesioned rats were (6.25 +/- 0.54) Hz and (5.67 +/- 0.46)Hz respectively, whereas to normal animals. Surthere were no significant differences in these two groups. In addition, the firing pattern did not change in VL compared prisingly, the firing rate in burst pattern decreased significantly.
CONCLUSIONThese findings demonstrate that PPN neurons are overactive in 6-OHDAlesioned rats, indicating the participation of this nucleus in the pathophysiology of parkinsonism and the activities of VL neurons might be regulated by projection from PPN to VL.
Action Potentials ; physiology ; Animals ; Corpus Striatum ; physiopathology ; Male ; Neural Pathways ; injuries ; pathology ; physiopathology ; Neurons ; physiology ; Oxidopamine ; toxicity ; Parkinson Disease ; pathology ; physiopathology ; Pedunculopontine Tegmental Nucleus ; physiopathology ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Substantia Nigra ; injuries ; pathology ; physiopathology ; Ventral Thalamic Nuclei ; physiopathology
9.Triptolide protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats: implication for immunosuppressive therapy in Parkinson's disease.
Jun-Peng GAO ; Shan SUN ; Wen-Wei LI ; Yi-Ping CHEN ; Ding-Fang CAI
Neuroscience Bulletin 2008;24(3):133-142
OBJECTIVENeuroinflammation with microglial activation has been implicated to have a strong association with the progressive dopaminergic neuronal loss in Parkinson's disease (PD). The present study was undertaken to evaluate the activation profile of microglia in 1-methyl-4-phenyl pyridinium (MPP+)-induced hemiparkinsonian rats. Triptolide, a potent immunosuppressant and microglia inhibitor, was then examined for its efficacy in protecting dopaminergic neurons from injury and ameliorating behavioral disabilities induced by MPP+.
METHODSThe rat model of PD was established by intranigral microinjection of MPP+. At baseline and on day 1, 3, 7, 14, 21 following MPP+ injection, the degree of microglial activation was examined by detecting the immunodensity of OX-42 (microglia marker) in the substantia nigra (SN). The number of viable dopaminergic neurons was determined by measuring tyrosine hydroxylase (TH) positive neurons in the SN. Behavioral performances were evaluated by counting the number of rotations induced by apomorphine, calculating scores of forelimb akinesia and vibrissae-elicited forelimb placing asymmetry.
RESULTSIntranigral injection of MPP+ resulted in robust activation of microglia, progressive depletion of dopaminergic neurons, and ongoing aggravation of behavioral disabilities in rats. Triptolide significantly inhibited microglial activation, partially prevented dopaminergic cells from death and improved behavioral performances.
CONCLUSIONThese data demonstrated for the first time a neuroprotective effect of triptolide on dopaminergic neurons in MPP+-induced hemiparkinsonian rats. The protective effect of triptolide may, at least partially, be related to the inhibition of MPP+-induced microglial activation. Our results lend strong support to the use of immunosuppressive agents in the management of PD.
1-Methyl-4-phenylpyridinium ; antagonists & inhibitors ; toxicity ; Animals ; Biomarkers ; metabolism ; CD11b Antigen ; analysis ; metabolism ; Cell Count ; Cell Survival ; drug effects ; physiology ; Disability Evaluation ; Diterpenes ; pharmacology ; therapeutic use ; Dopamine ; metabolism ; Encephalitis ; drug therapy ; immunology ; prevention & control ; Epoxy Compounds ; pharmacology ; therapeutic use ; Gliosis ; drug therapy ; immunology ; prevention & control ; Herbicides ; antagonists & inhibitors ; toxicity ; Immunosuppression ; methods ; Immunosuppressive Agents ; pharmacology ; therapeutic use ; Male ; Microglia ; drug effects ; immunology ; Neurons ; drug effects ; immunology ; pathology ; Parkinsonian Disorders ; drug therapy ; immunology ; physiopathology ; Phenanthrenes ; pharmacology ; therapeutic use ; Rats ; Rats, Sprague-Dawley ; Substantia Nigra ; drug effects ; immunology ; physiopathology ; Treatment Outcome ; Tyrosine 3-Monooxygenase ; analysis ; metabolism
10.Copper (Cu2+) induces degeneration of dopaminergic neurons in the nigrostriatal system of rats.
Wen-Ran YU ; Hong JIANG ; Jun WANG ; Jun-Xia XIE
Neuroscience Bulletin 2008;24(2):73-78
OBJECTIVETo study the effects of intranigral injection of different doses of CuSO4.5H2O on dopaminergic neuron in the nigrostriatal system of rats.
METHODSWistar rats were divided into four groups, including control group, 10 nmol, 50 nmol and 200 nmol copper injected into left substantia nigra (SN) groups. Seven days after the intranigral injection of copper, dopamine (DA) contents in the striatum (Str) were measured by high performance lipid chromotophotography (HPLC); the density of tyrosine hydroxylase (TH) positive axons in the Str was measured by TH staining method; TH and Caspase-3 mRNA expression in the SN were measured by semi-quantitative RT-PCR. We detected the activity of superoxide dismutase (SOD) in the lesioned midbrain of rats using biochemical methods.
RESULTSDA and its metabolites contents had no significant difference between control group and low dose (10 nmol) copper group. But from 50 nmol copper group, DA contents in the lesioned sides were reduced with the increase in the copper doses injected, showing a significant linear correlation (F = 34.16, P < 0.01). In the 50 nmol copper group, TH positive axons in the Str decreased compared with those of the control and unlesioned sides (F = 121.9, P < 0.01). In the 50 nmol copper group, TH mRNA expression decreased (t = 3.12, P < 0.01) while Caspase-3 mRNA expression increased (t = 8.96, P < 0.01) in the SN compared with the control. SOD activity decreased in the midbrain of rats treated with 50 nmol copper compared with that of the control (t = 2.33, P < 0.01).
CONCLUSIONCopper could induce damage of dopaminergic neurons in the SN of rats through destroying antioxidant defenses and promoting apoptosis.
Animals ; Apoptosis ; drug effects ; physiology ; Axons ; drug effects ; metabolism ; pathology ; Caspase 3 ; drug effects ; genetics ; metabolism ; Copper ; toxicity ; Corpus Striatum ; drug effects ; metabolism ; pathology ; Dopamine ; metabolism ; Dose-Response Relationship, Drug ; Male ; Nerve Degeneration ; chemically induced ; metabolism ; pathology ; Neural Pathways ; drug effects ; metabolism ; pathology ; Neurons ; drug effects ; metabolism ; pathology ; Neurotoxins ; toxicity ; Oxidative Stress ; drug effects ; physiology ; Parkinsonian Disorders ; chemically induced ; metabolism ; physiopathology ; RNA, Messenger ; drug effects ; metabolism ; Rats ; Rats, Wistar ; Substantia Nigra ; drug effects ; metabolism ; pathology ; Superoxide Dismutase ; drug effects ; genetics ; metabolism ; Superoxide Dismutase-1 ; Tyrosine 3-Monooxygenase ; drug effects ; genetics ; metabolism ; Wallerian Degeneration ; chemically induced ; metabolism ; pathology

Result Analysis
Print
Save
E-mail