1.A prospective comparison of two ultrasound attenuation imaging modes using different frequencies for assessing hepatic steatosis
Hyeon Ji JANG ; Jong Keon JANG ; Subin HEO ; Boyeon KOO ; In Hye SONG ; Hee Jun PARK ; Seonghun YOON ; So Yeon KIM
Ultrasonography 2025;44(3):202-211
Purpose:
This study compared the diagnostic performance of two attenuation imaging (ATI) modes—low-frequency (3 MHz) and high-frequency (4 MHz)—for assessing hepatic steatosis, with histopathological hepatic fat fraction (HFF) as the reference standard.
Methods:
This prospective single-center study enrolled participants with suspected metabolic dysfunction-associated steatotic liver disease (MASLD) scheduled for liver biopsy or surgery between June 2023 and June 2024. Attenuation coefficient (AC) values were consecutively measured using low- and high-frequency ATI modes, while the skin-to-region of interest distance (SRD) was measured simultaneously. Spearman correlation analysis evaluated the relationships of AC with HFF and SRD, and linear regression identified factors affecting AC. Diagnostic performance was evaluated using the area under the receiver operating characteristic curve (AUROC).
Results:
In total, 119 participants (mean age, 37.2±12.0 years; 87 men) were included, with 73 (61.3%) diagnosed with MASLD. HFF ranged from 0% to 50%. The AC values in the lowfrequency mode were significantly higher than those in the high-frequency mode (0.61 vs. 0.54 dB/cm/MHz, P<0.001). HFF significantly influenced AC in both modes, whereas SRD affected AC only in the high-frequency mode (P<0.001). AC correlated positively with HFF in both modes (rs≥0.514, P<0.001) and negatively with SRD in the high-frequency mode (rs=-0.338, P<0.001). The AUROC for hepatic steatosis did not differ significantly between the two modes (0.751 vs. 0.771; P=0.609).
Conclusion
The low-frequency mode produced higher AC values than the high-frequency mode and demonstrated comparable diagnostic accuracy for assessing hepatic steatosis. Unlike the high-frequency mode, the low-frequency mode was not influenced by SRD.
2.Insights into hepatocellular adenomas in Asia: molecular subtypes, clinical characteristics, imaging features, and hepatocellular carcinoma risks
Subin HEO ; In Hye SONG ; Edouard REIZINE ; Maxime RONOT ; Jean-Charles NAULT ; Hae Young KIM ; Sang Hyun CHOI ; So Yeon KIM
Journal of Liver Cancer 2025;25(1):67-78
Hepatocellular adenomas (HCAs) are benign monoclonal liver tumors. Advances in molecular studies have led to the identification of distinct subtypes of HCA with unique pathways, clinical characteristics, and complication risks, underscoring the need for precise diagnosis and tailored management. Malignant transformation and bleeding remain significant concerns. Imaging plays a crucial role in the identification of these subtypes, offering a non-invasive method to guide clinical decision-making. Most studies involving patients with HCAs have been conducted in Western populations; however, the number of studies focused on Asian population has increased in recent years. HCAs exhibit distinct features in Asian population, such as a higher prevalence among male patients and specific subtypes (e.g., inflammatory HCAs). Current clinical guidelines are predominantly influenced by Western data, which may not fully capture these regional differences in epidemiology and subtype distribution. Therefore, this review presents the updated molecular classification of HCAs and their epidemiologic differences between Asian and Western populations, and discuss the role of imaging techniques, particularly magnetic resonance imaging using hepatobiliary contrast agents, in classifying the subtypes and predicting the risk of hepatocellular carcinoma.
3.A prospective comparison of two ultrasound attenuation imaging modes using different frequencies for assessing hepatic steatosis
Hyeon Ji JANG ; Jong Keon JANG ; Subin HEO ; Boyeon KOO ; In Hye SONG ; Hee Jun PARK ; Seonghun YOON ; So Yeon KIM
Ultrasonography 2025;44(3):202-211
Purpose:
This study compared the diagnostic performance of two attenuation imaging (ATI) modes—low-frequency (3 MHz) and high-frequency (4 MHz)—for assessing hepatic steatosis, with histopathological hepatic fat fraction (HFF) as the reference standard.
Methods:
This prospective single-center study enrolled participants with suspected metabolic dysfunction-associated steatotic liver disease (MASLD) scheduled for liver biopsy or surgery between June 2023 and June 2024. Attenuation coefficient (AC) values were consecutively measured using low- and high-frequency ATI modes, while the skin-to-region of interest distance (SRD) was measured simultaneously. Spearman correlation analysis evaluated the relationships of AC with HFF and SRD, and linear regression identified factors affecting AC. Diagnostic performance was evaluated using the area under the receiver operating characteristic curve (AUROC).
Results:
In total, 119 participants (mean age, 37.2±12.0 years; 87 men) were included, with 73 (61.3%) diagnosed with MASLD. HFF ranged from 0% to 50%. The AC values in the lowfrequency mode were significantly higher than those in the high-frequency mode (0.61 vs. 0.54 dB/cm/MHz, P<0.001). HFF significantly influenced AC in both modes, whereas SRD affected AC only in the high-frequency mode (P<0.001). AC correlated positively with HFF in both modes (rs≥0.514, P<0.001) and negatively with SRD in the high-frequency mode (rs=-0.338, P<0.001). The AUROC for hepatic steatosis did not differ significantly between the two modes (0.751 vs. 0.771; P=0.609).
Conclusion
The low-frequency mode produced higher AC values than the high-frequency mode and demonstrated comparable diagnostic accuracy for assessing hepatic steatosis. Unlike the high-frequency mode, the low-frequency mode was not influenced by SRD.
4.A prospective comparison of two ultrasound attenuation imaging modes using different frequencies for assessing hepatic steatosis
Hyeon Ji JANG ; Jong Keon JANG ; Subin HEO ; Boyeon KOO ; In Hye SONG ; Hee Jun PARK ; Seonghun YOON ; So Yeon KIM
Ultrasonography 2025;44(3):202-211
Purpose:
This study compared the diagnostic performance of two attenuation imaging (ATI) modes—low-frequency (3 MHz) and high-frequency (4 MHz)—for assessing hepatic steatosis, with histopathological hepatic fat fraction (HFF) as the reference standard.
Methods:
This prospective single-center study enrolled participants with suspected metabolic dysfunction-associated steatotic liver disease (MASLD) scheduled for liver biopsy or surgery between June 2023 and June 2024. Attenuation coefficient (AC) values were consecutively measured using low- and high-frequency ATI modes, while the skin-to-region of interest distance (SRD) was measured simultaneously. Spearman correlation analysis evaluated the relationships of AC with HFF and SRD, and linear regression identified factors affecting AC. Diagnostic performance was evaluated using the area under the receiver operating characteristic curve (AUROC).
Results:
In total, 119 participants (mean age, 37.2±12.0 years; 87 men) were included, with 73 (61.3%) diagnosed with MASLD. HFF ranged from 0% to 50%. The AC values in the lowfrequency mode were significantly higher than those in the high-frequency mode (0.61 vs. 0.54 dB/cm/MHz, P<0.001). HFF significantly influenced AC in both modes, whereas SRD affected AC only in the high-frequency mode (P<0.001). AC correlated positively with HFF in both modes (rs≥0.514, P<0.001) and negatively with SRD in the high-frequency mode (rs=-0.338, P<0.001). The AUROC for hepatic steatosis did not differ significantly between the two modes (0.751 vs. 0.771; P=0.609).
Conclusion
The low-frequency mode produced higher AC values than the high-frequency mode and demonstrated comparable diagnostic accuracy for assessing hepatic steatosis. Unlike the high-frequency mode, the low-frequency mode was not influenced by SRD.
5.Insights into hepatocellular adenomas in Asia: molecular subtypes, clinical characteristics, imaging features, and hepatocellular carcinoma risks
Subin HEO ; In Hye SONG ; Edouard REIZINE ; Maxime RONOT ; Jean-Charles NAULT ; Hae Young KIM ; Sang Hyun CHOI ; So Yeon KIM
Journal of Liver Cancer 2025;25(1):67-78
Hepatocellular adenomas (HCAs) are benign monoclonal liver tumors. Advances in molecular studies have led to the identification of distinct subtypes of HCA with unique pathways, clinical characteristics, and complication risks, underscoring the need for precise diagnosis and tailored management. Malignant transformation and bleeding remain significant concerns. Imaging plays a crucial role in the identification of these subtypes, offering a non-invasive method to guide clinical decision-making. Most studies involving patients with HCAs have been conducted in Western populations; however, the number of studies focused on Asian population has increased in recent years. HCAs exhibit distinct features in Asian population, such as a higher prevalence among male patients and specific subtypes (e.g., inflammatory HCAs). Current clinical guidelines are predominantly influenced by Western data, which may not fully capture these regional differences in epidemiology and subtype distribution. Therefore, this review presents the updated molecular classification of HCAs and their epidemiologic differences between Asian and Western populations, and discuss the role of imaging techniques, particularly magnetic resonance imaging using hepatobiliary contrast agents, in classifying the subtypes and predicting the risk of hepatocellular carcinoma.
6.A prospective comparison of two ultrasound attenuation imaging modes using different frequencies for assessing hepatic steatosis
Hyeon Ji JANG ; Jong Keon JANG ; Subin HEO ; Boyeon KOO ; In Hye SONG ; Hee Jun PARK ; Seonghun YOON ; So Yeon KIM
Ultrasonography 2025;44(3):202-211
Purpose:
This study compared the diagnostic performance of two attenuation imaging (ATI) modes—low-frequency (3 MHz) and high-frequency (4 MHz)—for assessing hepatic steatosis, with histopathological hepatic fat fraction (HFF) as the reference standard.
Methods:
This prospective single-center study enrolled participants with suspected metabolic dysfunction-associated steatotic liver disease (MASLD) scheduled for liver biopsy or surgery between June 2023 and June 2024. Attenuation coefficient (AC) values were consecutively measured using low- and high-frequency ATI modes, while the skin-to-region of interest distance (SRD) was measured simultaneously. Spearman correlation analysis evaluated the relationships of AC with HFF and SRD, and linear regression identified factors affecting AC. Diagnostic performance was evaluated using the area under the receiver operating characteristic curve (AUROC).
Results:
In total, 119 participants (mean age, 37.2±12.0 years; 87 men) were included, with 73 (61.3%) diagnosed with MASLD. HFF ranged from 0% to 50%. The AC values in the lowfrequency mode were significantly higher than those in the high-frequency mode (0.61 vs. 0.54 dB/cm/MHz, P<0.001). HFF significantly influenced AC in both modes, whereas SRD affected AC only in the high-frequency mode (P<0.001). AC correlated positively with HFF in both modes (rs≥0.514, P<0.001) and negatively with SRD in the high-frequency mode (rs=-0.338, P<0.001). The AUROC for hepatic steatosis did not differ significantly between the two modes (0.751 vs. 0.771; P=0.609).
Conclusion
The low-frequency mode produced higher AC values than the high-frequency mode and demonstrated comparable diagnostic accuracy for assessing hepatic steatosis. Unlike the high-frequency mode, the low-frequency mode was not influenced by SRD.
7.Insights into hepatocellular adenomas in Asia: molecular subtypes, clinical characteristics, imaging features, and hepatocellular carcinoma risks
Subin HEO ; In Hye SONG ; Edouard REIZINE ; Maxime RONOT ; Jean-Charles NAULT ; Hae Young KIM ; Sang Hyun CHOI ; So Yeon KIM
Journal of Liver Cancer 2025;25(1):67-78
Hepatocellular adenomas (HCAs) are benign monoclonal liver tumors. Advances in molecular studies have led to the identification of distinct subtypes of HCA with unique pathways, clinical characteristics, and complication risks, underscoring the need for precise diagnosis and tailored management. Malignant transformation and bleeding remain significant concerns. Imaging plays a crucial role in the identification of these subtypes, offering a non-invasive method to guide clinical decision-making. Most studies involving patients with HCAs have been conducted in Western populations; however, the number of studies focused on Asian population has increased in recent years. HCAs exhibit distinct features in Asian population, such as a higher prevalence among male patients and specific subtypes (e.g., inflammatory HCAs). Current clinical guidelines are predominantly influenced by Western data, which may not fully capture these regional differences in epidemiology and subtype distribution. Therefore, this review presents the updated molecular classification of HCAs and their epidemiologic differences between Asian and Western populations, and discuss the role of imaging techniques, particularly magnetic resonance imaging using hepatobiliary contrast agents, in classifying the subtypes and predicting the risk of hepatocellular carcinoma.
8.A prospective comparison of two ultrasound attenuation imaging modes using different frequencies for assessing hepatic steatosis
Hyeon Ji JANG ; Jong Keon JANG ; Subin HEO ; Boyeon KOO ; In Hye SONG ; Hee Jun PARK ; Seonghun YOON ; So Yeon KIM
Ultrasonography 2025;44(3):202-211
Purpose:
This study compared the diagnostic performance of two attenuation imaging (ATI) modes—low-frequency (3 MHz) and high-frequency (4 MHz)—for assessing hepatic steatosis, with histopathological hepatic fat fraction (HFF) as the reference standard.
Methods:
This prospective single-center study enrolled participants with suspected metabolic dysfunction-associated steatotic liver disease (MASLD) scheduled for liver biopsy or surgery between June 2023 and June 2024. Attenuation coefficient (AC) values were consecutively measured using low- and high-frequency ATI modes, while the skin-to-region of interest distance (SRD) was measured simultaneously. Spearman correlation analysis evaluated the relationships of AC with HFF and SRD, and linear regression identified factors affecting AC. Diagnostic performance was evaluated using the area under the receiver operating characteristic curve (AUROC).
Results:
In total, 119 participants (mean age, 37.2±12.0 years; 87 men) were included, with 73 (61.3%) diagnosed with MASLD. HFF ranged from 0% to 50%. The AC values in the lowfrequency mode were significantly higher than those in the high-frequency mode (0.61 vs. 0.54 dB/cm/MHz, P<0.001). HFF significantly influenced AC in both modes, whereas SRD affected AC only in the high-frequency mode (P<0.001). AC correlated positively with HFF in both modes (rs≥0.514, P<0.001) and negatively with SRD in the high-frequency mode (rs=-0.338, P<0.001). The AUROC for hepatic steatosis did not differ significantly between the two modes (0.751 vs. 0.771; P=0.609).
Conclusion
The low-frequency mode produced higher AC values than the high-frequency mode and demonstrated comparable diagnostic accuracy for assessing hepatic steatosis. Unlike the high-frequency mode, the low-frequency mode was not influenced by SRD.
10.Prognostication of Hepatocellular Carcinoma Using Artificial Intelligence
Subin HEO ; Hyo Jung PARK ; Seung Soo LEE
Korean Journal of Radiology 2024;25(6):550-558
Hepatocellular carcinoma (HCC) is a biologically heterogeneous tumor characterized by varying degrees of aggressiveness.The current treatment strategy for HCC is predominantly determined by the overall tumor burden, and does not address the diverse prognoses of patients with HCC owing to its heterogeneity. Therefore, the prognostication of HCC using imaging data is crucial for optimizing patient management. Although some radiologic features have been demonstrated to be indicative of the biologic behavior of HCC, traditional radiologic methods for HCC prognostication are based on visually-assessed prognostic findings, and are limited by subjectivity and inter-observer variability. Consequently, artificial intelligence has emerged as a promising method for image-based prognostication of HCC. Unlike traditional radiologic image analysis, artificial intelligence based on radiomics or deep learning utilizes numerous image-derived quantitative features, potentially offering an objective, detailed, and comprehensive analysis of the tumor phenotypes. Artificial intelligence, particularly radiomics has displayed potential in a variety of applications, including the prediction of microvascular invasion, recurrence risk after locoregional treatment, and response to systemic therapy. This review highlights the potential value of artificial intelligence in the prognostication of HCC as well as its limitations and future prospects.

Result Analysis
Print
Save
E-mail