1.The risk prediction models for anastomotic leakage after esophagectomy: A systematic review and meta-analysis
Yushuang SU ; Yan LI ; Hong GAO ; Zaichun PU ; Juan CHEN ; Mengting LIU ; Yaxie HE ; Bin HE ; Qin YANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):230-236
Objective To systematically evaluate the risk prediction models for anastomotic leakage (AL) in patients with esophageal cancer after surgery. Methods A computer-based search of PubMed, EMbase, Web of Science, Cochrane Library, Chinese Medical Journal Full-text Database, VIP, Wanfang, SinoMed and CNKI was conducted to collect studies on postoperative AL risk prediction model for esophageal cancer from their inception to October 1st, 2023. PROBAST tool was employed to evaluate the bias risk and applicability of the model, and Stata 15 software was utilized for meta-analysis. Results A total of 19 literatures were included covering 25 AL risk prediction models and 7373 patients. The area under the receiver operating characteristic curve (AUC) was 0.670-0.960. Among them, 23 prediction models had a good prediction performance (AUC>0.7); 13 models were tested for calibration of the model; 1 model was externally validated, and 10 models were internally validated. Meta-analysis showed that hypoproteinemia (OR=9.362), postoperative pulmonary complications (OR=7.427), poor incision healing (OR=5.330), anastomosis type (OR=2.965), preoperative history of thoracoabdominal surgery (OR=3.181), preoperative diabetes mellitus (OR=2.445), preoperative cardiovascular disease (OR=3.260), preoperative neoadjuvant therapy (OR=2.977), preoperative respiratory disease (OR=4.744), surgery method (OR=4.312), American Society of Anesthesiologists score (OR=2.424) were predictors for AL after esophageal cancer surgery. Conclusion At present, the prediction model of AL risk in patients with esophageal cancer after surgery is in the development stage, and the overall research quality needs to be improved.
2.Equivalence of SYN008 versus omalizumab in patients with refractory chronic spontaneous urticaria: A multicenter, randomized, double-blind, parallel-group, active-controlled phase III study.
Jingyi LI ; Yunsheng LIANG ; Wenli FENG ; Liehua DENG ; Hong FANG ; Chao JI ; Youkun LIN ; Furen ZHANG ; Rushan XIA ; Chunlei ZHANG ; Shuping GUO ; Mao LIN ; Yanling LI ; Shoumin ZHANG ; Xiaojing KANG ; Liuqing CHEN ; Zhiqiang SONG ; Xu YAO ; Chengxin LI ; Xiuping HAN ; Guoxiang GUO ; Qing GUO ; Xinsuo DUAN ; Jie LI ; Juan SU ; Shanshan LI ; Qing SUN ; Juan TAO ; Yangfeng DING ; Danqi DENG ; Fuqiu LI ; Haiyun SUO ; Shunquan WU ; Jingbo QIU ; Hongmei LUO ; Linfeng LI ; Ruoyu LI
Chinese Medical Journal 2025;138(16):2040-2042
3.Chemical and pharmacological research progress on Mongolian folk medicine Syringa pinnatifolia.
Kun GAO ; Chang-Xin LIU ; Jia-Qi CHEN ; Jing-Jing SUN ; Xiao-Juan LI ; Zhi-Qiang HUANG ; Ye ZHANG ; Pei-Feng XUE ; Su-Yi-le CHEN ; Xin DONG ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(8):2080-2089
Syringa pinnatifolia, belonging to the family Oleaceae, is a species endemic to China. It is predominantly distributed in the Helan Mountains region of Inner Mongolia and Ningxia of China. The peeled roots, stems, and thick branches have been used as a distinctive Mongolian medicinal material known as "Shan-chen-xiang", which has effects such as suppressing "khii", clearing heat, and relieving pain and is employed for the treatment of cardiovascular and pulmonary diseases and joint pain. Over the past five years, significant increase was achieved in research on chemical constituents and pharmacological effects. There were a total of 130 new constituents reported, covering sesquiterpenoids, lignans, and alkaloids. Its effects of anti-myocardial ischemia, anti-cerebral ischemia/reperfusion, sedation, and analgesia were revealed, and the mechanisms of agarwood formation were also investigated. To better understand its medical value and potential of clinical application, this review updates the research progress in recent five years focusing on the chemical constituents and pharmacological effects of S. pinnatifolia, providing reference for subsequent research on active ingredient and support for its innovative application in modern medicine system.
Medicine, Mongolian Traditional
;
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Syringa/chemistry*
4.Research progress on pentacyclic triterpenoids in medicinal Ilex species and their pharmacological activities.
Yu-Ling LIU ; Yi-Ran WU ; Bao-Lin WANG ; Xiao-Wei SU ; Qiu-Juan CHEN ; Yi RAO ; Shi-Lin YANG ; Li-Ni HUO ; Hong-Wei GAO
China Journal of Chinese Materia Medica 2025;50(12):3252-3266
Traditional Chinese medicine(TCM) capable of clearing heat and removing toxin is most commonly used in clinical practice and has the effect of removing fire-heat and toxin. Studies have shown that most of the Ilex plants have the effect of clearing heat and removing toxin, among which the varieties of I. cornuta, I. pubescens, I. rotunda, I. latifolia, and I. chinensis are most widely used. These plants generally contain triterpenoids and their glycosides, alkaloids, flavonoids, phenylpropanoids, and other chemical components, especially pentacyclic triterpenoids. According to their skeletons, pentacyclic triterpenoids can be divided into the oleanane type, the ursane type, the lupinane type, etc. Among them, ursane-type components are the most abundant, and 136 species have been found so far. These components have been proved to have pharmacological effects such as anti-inflammatory, anti-tumor, hypolipidemic, anti-thrombosis, cardiomyocyte-protective, antibacterial, and hepatoprotective effects. Therefore, this paper systematically reviews the domestic and foreign literature on Ilex plants with a focus on the research progress on pentacyclic triterpenoids and their pharmacological activities, aiming to provide reference for the development of TCM resources with the effect of clearing heat and removing toxin.
Ilex/chemistry*
;
Plants, Medicinal/chemistry*
;
Pentacyclic Triterpenes/pharmacology*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Animals
5.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
6.RXRα modulates hepatic stellate cell activation and liver fibrosis by targeting CaMKKβ-AMPKα axis.
Lijun CAI ; Meimei YIN ; Shuangzhou PENG ; Fen LIN ; Liangliang LAI ; Xindao ZHANG ; Lei XIE ; Chuanying WANG ; Huiying ZHOU ; Yunfeng ZHAN ; Gulimiran ALITONGBIEKE ; Baohuan LIAN ; Zhibin SU ; Tenghui LIU ; Yuqi ZHOU ; Zongxi LI ; Xiaohui CHEN ; Qi ZHAO ; Ting DENG ; Lulu CHEN ; Jingwei SU ; Luoyan SHENG ; Ying SU ; Ling-Juan ZHANG ; Fu-Quan JIANG ; Xiao-Kun ZHANG
Acta Pharmaceutica Sinica B 2025;15(7):3611-3631
Hepatic stellate cells (HSCs) are the primary fibrogenic cells in the liver, and their activation plays a crucial role in the development and progression of hepatic fibrosis. Here, we report that retinoid X receptor-alpha (RXRα), a unique member of the nuclear receptor superfamily, is a key modulator of HSC activation and liver fibrosis. RXRα exerts its effects by modulating calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ)-mediated activation of AMP-activated protein kinase-alpha (AMPKα). In addition, we demonstrate that K-80003, which binds RXRα by a unique mechanism, effectively suppresses HSC activation, proliferation, and migration, thereby inhibiting liver fibrosis in the CCl4 and amylin liver NASH (AMLN) diet animal models. The effect is mediated by AMPKα activation, promoting mitophagy in HSCs. Mechanistically, K-80003 activates AMPKα by inducing RXRα to form condensates with CaMKKβ and AMPKα via a two-phase process. The formation of RXRα condensates is driven by its N-terminal intrinsic disorder region and requires phosphorylation by CaMKKβ. Our results reveal a crucial role of RXRα in liver fibrosis regulation through modulating mitochondrial activities in HSCs. Furthermore, they suggest that K-80003 and related RXRα modulators hold promise as therapeutic agents for fibrosis-related diseases.
7.Artificial intelligence and anti-cancer drugs' response.
Xinrui LONG ; Kai SUN ; Sicen LAI ; Yuancheng LIU ; Juan SU ; Wangqing CHEN ; Ruhan LIU ; Xiaoyu HE ; Shuang ZHAO ; Kai HUANG
Acta Pharmaceutica Sinica B 2025;15(7):3355-3371
Drug resistance is one of the key factors affecting the effectiveness of cancer treatment methods, including chemotherapy, radiotherapy, and immunotherapy. Its occurrence is related to factors such as mRNA expression and methylation within cancer cells. If drug resistance in patients can be accurately identified early, doctors can devise more effective treatment plans, which is of great significance for improving patients' survival rates and quality of life. Cancer drug resistance prediction based on artificial intelligence (AI) technology has emerged as a current research hotspot, demonstrating promising application prospects in guiding clinical individualized and precise medication for cancer patients. This review aims to comprehensively summarize the research progress in utilizing AI algorithms to analyze multi-omics data including genomics, transcriptomics, epigenomics, proteomics, metabolomics, radiomics, and histopathology, for predicting cancer drug resistance. It provides a detailed exposition of the processes involved in data processing and model construction, examines the current challenges faced in this field and future development directions, with the aim of better advancing the progress of precision medicine.
8.Preparation and Performance Characterization of Microcapsules Containing Ethanol Extract from Galangal
Su-Juan PENG ; Zhen-Rong WEN ; Zhen-Ying FENG ; Dan CHEN ; Jian-Wen WANG ; Li-Ping HUANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(5):1307-1315
Objective To explore the best preparation process and performance characterization of microcapsules containing ethanol extract from galangal.Methods With gum arabic(GA)-chitosan(CS)as capsule wall material,microcapsules were prepared by complex coacervation method.With drug loading and encapsulation efficiency as indexes,the optimal preparation technology of microcapsules was screened by orthogonal design method.The content of ethanol extract of galangal in microcapsules was determined by high performance liquid chromatography(HPLC).The prepared microcapsules were characterized by infrared spectrometer and scanning electron microscope.Results The optimum preparation conditions of microcapsules containing galangal ethanol extract were as follows:wall material ratio(GA/CS)6∶1,core to wall ratio 1∶1,coagulation time 45 minutes,curing agent dosage 3 mL.Under these conditions,the drug loading and encapsulation efficiency of microcapsules containing galangal ethanol extract were 27.17%and 80.07%,respectively,and the sustained release performance of microcapsules of galangal ethanol extract was superior to that of galangal ethanol extract.Conclusion The preparation of microcapsules containing galangal ethanol extract by complex coacervation method has good encapsulation,and the method is simple,stable and reliable,and has high feasibility.
9.Differential component analysis between Fructus Tritici Levis and Triticum aestivum based on qualitative and quantitative methods
Xuejiao LI ; Yu HU ; Yun CHEN ; Juan SHANG ; Zhenyang LI ; Yunhua FENG ; Jiandong ZOU ; Weifeng YAO ; Su LU ; Meijuan XU
China Pharmacy 2024;35(11):1296-1302
OBJECTIVE To analyze the compositional differences between Fructus Tritici Levis and Triticum aestivum, and to provide reference for identification and quality control of both. METHODS Twenty batches of Fructus Tritici Levis and three batches of T. aestivum were collected, and their fingerprints were acquired by high-performance liquid chromatography and the similarities were evaluated by the Evaluation System of Similarity of Chromatographic Fingerprints of Traditional Chinese Medicine (2012 version). Cluster analysis (CA), principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were performed to analyze the difference of Fructus Tritici Levis and T. aestivum from different regions, and the differential components were screened. The contents of the six identified components in Fructus Tritici Levis and T. aestivum were determined. RESULTS The similarities of the fingerprints of Fructus Tritici Levis ranged from 0.928 to 0.996, and the relative similarities of T. aestivum with Fructus Tritici Levis ranged from 0.761 to 0.773. A total of 19 common peaks were calibrated, and six components including linolenic acid, linoleic acid, 5-heptadecylresorcinol, 5-nonadodecylresorcinol, 5- heneicosylresorcinol, and 5-tricosylresorcinol were identified. The results of CA and PCA showed that Fructus Tritici Levis and T. aestivum could be clearly distinguished; the distribution of Fructus Tritici Levis from Anhui province was relatively concentrated. The results of OPLS-DA showed that linolenic acid, linoleic acid, and other six unknown compounds were the differential components between Fructus Tritici Levis and T. aestivum. The average contents of the six identified components in Fructus Tritici Levis were 0.100 9, 1.094 0, 0.005 1, 0.030 9, 0.098 2,and 0.024 8 mg/g, respectively; the contents of linolenic acid and linoleic acid in Fructus Tritici Levis were significantly higher than those in T. aestivum (P<0.05).CONCLUSIONS The established qualitative and quantitative methods are simple and reliable, and can be used for the identification and quality evaluation of Fructus Tritici Levis and T. aestivum. The identified differential components, such as linolenic acid and linoleic acid, can also provide clues for the differentiation and pharmacological study of Fructus Tritici Levis and T. aestivum.
10.Differential component analysis between Fructus Tritici Levis and Triticum aestivum based on qualitative and quantitative methods
Xuejiao LI ; Yu HU ; Yun CHEN ; Juan SHANG ; Zhenyang LI ; Yunhua FENG ; Jiandong ZOU ; Weifeng YAO ; Su LU ; Meijuan XU
China Pharmacy 2024;35(11):1296-1302
OBJECTIVE To analyze the compositional differences between Fructus Tritici Levis and Triticum aestivum, and to provide reference for identification and quality control of both. METHODS Twenty batches of Fructus Tritici Levis and three batches of T. aestivum were collected, and their fingerprints were acquired by high-performance liquid chromatography and the similarities were evaluated by the Evaluation System of Similarity of Chromatographic Fingerprints of Traditional Chinese Medicine (2012 version). Cluster analysis (CA), principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were performed to analyze the difference of Fructus Tritici Levis and T. aestivum from different regions, and the differential components were screened. The contents of the six identified components in Fructus Tritici Levis and T. aestivum were determined. RESULTS The similarities of the fingerprints of Fructus Tritici Levis ranged from 0.928 to 0.996, and the relative similarities of T. aestivum with Fructus Tritici Levis ranged from 0.761 to 0.773. A total of 19 common peaks were calibrated, and six components including linolenic acid, linoleic acid, 5-heptadecylresorcinol, 5-nonadodecylresorcinol, 5- heneicosylresorcinol, and 5-tricosylresorcinol were identified. The results of CA and PCA showed that Fructus Tritici Levis and T. aestivum could be clearly distinguished; the distribution of Fructus Tritici Levis from Anhui province was relatively concentrated. The results of OPLS-DA showed that linolenic acid, linoleic acid, and other six unknown compounds were the differential components between Fructus Tritici Levis and T. aestivum. The average contents of the six identified components in Fructus Tritici Levis were 0.100 9, 1.094 0, 0.005 1, 0.030 9, 0.098 2,and 0.024 8 mg/g, respectively; the contents of linolenic acid and linoleic acid in Fructus Tritici Levis were significantly higher than those in T. aestivum (P<0.05).CONCLUSIONS The established qualitative and quantitative methods are simple and reliable, and can be used for the identification and quality evaluation of Fructus Tritici Levis and T. aestivum. The identified differential components, such as linolenic acid and linoleic acid, can also provide clues for the differentiation and pharmacological study of Fructus Tritici Levis and T. aestivum.

Result Analysis
Print
Save
E-mail