1.Objective characteristics of tongue manifestation in different stages of damp-heat syndrome in diabetic kidney disease
Zhaoxi DONG ; Yang SHI ; Jiaming SU ; Yaxuan WEN ; Zheyu XU ; Xinhui YU ; Jie MEI ; Fengyi CAI ; Xinyue ZANG ; Yan GUO ; Chengdong PENG ; Hongfang LIU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):398-411
Objective:
To investigate the objective characteristics of tongue manifestation in different stages of damp-heat syndrome in diabetic kidney disease (DKD).
Methods:
A cross-sectional study enrolled 134 patients with DKD G3-5 stages who met the diagnostic criteria for damp-heat syndrome in DKD. The patients were treated at Dongzhimen Hospital, Beijing University of Chinese Medicine, from May 2023 to January 2024. The patients were divided into three groups: DKD G3, DKD G4, and DKD G5 stage, with 53, 33, and 48 patients in each group, respectively. Clinical general data (gender, age, and body mass index) and damp-heat syndrome scores were collected from the patients. The YZAI-02 traditional Chinese medicine (TCM) AI Tongue Image Acquisition Device was used to capture tongue images from these patients. The accompanying AI Open Platform for TCM Tongue Diagnosis of the device was used to analyze and extract tongue manifestation features, including objective data on tongue color, tongue quality, coating color, and coating texture. Clinical data and objective tongue manifestation characteristics were compared among patients with DKD G3-5 based on their DKD damp-heat syndrome status.
Results:
No statistically significant difference in gender or body mass index was observed among the three patient groups. The DKD G3 stage group had the highest age (P<0.05). The DKD G3 stage group had a lower score for symptoms of poor appetite and anorexia(P<0.05) than the DKD G5 group. No statistically significant difference was observed in damp-heat syndrome scores among the three groups. Compared with the DKD G5 stage group, the DKD G3 stage group showed a decreased proportion of pale color at the tip and edges of the tongue (P<0.05). The DKD G4 stage group exhibited an increased proportion of crimson at the root of the tongue, a decreased proportion of thick white tongue coating at the root, a decreased proportion of pale color at the tip and edges of the tongue, an increased hue value (indicating color tone) of the tongue color in the middle, an increased brightness value (indicating color lightness) of the tongue coating color in the middle, and an increased thickness of the tongue coating (P<0.05). No statistically significant difference was observed in other tongue color proportions, color chroma values, body characteristics, coating color proportions, coating color chroma values, and coating texture characteristics among the three groups.
Conclusion
Tongue features differ in different stages of DKD damp-heat syndrome in multiple dimensions, enabling the inference that during the DKD G5 stage, the degree of qi and blood deficiency in the kidneys, heart, lungs, liver, gallbladder, spleen, and stomach is prominent. Dampness is more likely to accumulate in the lower jiao, particularly in the kidneys, whereas heat evil in the spleen and stomach is the most severe. These insights provide novel ideas for the clinical treatment of DKD.
2.Association between negative life events and smartphone addiction among middle school students
Chinese Journal of School Health 2025;46(5):619-623
Objective:
To explore the association between negative life events and smartphone addiction among middle school students, so as to provide theoretical support and practical guidance for prevention and intervention of smartphone addiction among middle school students.
Methods:
Using cluster sampling, 8 890 students were selected to survey from 27 junior high schools and 3 senior high schools in a district of Shenzhen in 2022 (baseline) and 2023 (followup). Data were collected through selfresigned questionnaires on basic information, the Smartphone Addiction Scale-Short Version, and the Adolescent Selfrating Life Events Checklist. Mixedeffects models were employed to analyze the association.
Results:
Compared to 2022, the punishment scores of middle school students in 2023 [1.00 (0.00, 6.00) and 1.00 (0.00, 6.00)] decreased (Z=4.27), while the scores of interpersonal stress, learning stress and adaptation [4.00(0.00, 8.00), 4.00(0.00, 8.00); 4.00(1.00, 8.00), 5.00(2.00, 9.00); 2.00 (0.00, 6.00), 3.00 (0.00, 7.00)] increased (Z=-3.04, -8.36, -6.80) (P<0.01). Mixedeffects models revealed a positive doseresponse relationship between negative life events and smartphone addiction (OR=1.08-1.17, P<0.01). Stepwise regression showed independent positive effects of interpersonal stress (OR=1.05), academic stress (OR=1.03), and adaptation stress (OR=1.11) on smartphone addiction (P<0.01). Subgroup analysis of nonaddicted students in 2022 confirmed persistent associations for academic stress (OR=1.03) and adaptation (OR=1.07) (P<0.01).
Conclusion
Negative life events exhibit a positive doseresponse relationship with smartphone addiction, particularly interpersonal stress, academic stress, and adaptationrelated events.
3.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
4.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
5.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
6.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
7.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
8.Mume Fructus Restores Intestinal Mucosal Epithelial Barrier Through MEK/ERK Signaling Pathway in Mouse Model of Inflammatory Bowel Disease
Huachen LIU ; Chonghao ZHANG ; Yalan LI ; Jie LIU ; Jialong SU ; Na LI ; Shaoshuai LIU ; Qing WANG ; Guiying PENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):76-85
ObjectiveTo clarify the repair effect of Mume Fructus on the intestinal mucosal epithelial barrier in the mouse model of inflammatory bowel disease (IBD) and explore the repair mechanism. MethodsThirty-six male C57BL/6 mice were randomly assigned into six groups: normal, model, low-, medium-, and high-dose (200, 400, and 800 mg·kg-1) Mume Fructus, and sulfasalazine (300 mg·kg-1). Except the normal group, the rest groups had free access to 2% dextran sulfate sodium (DSS) solution for seven days to establish the IBD model, followed by a seven-day drug intervention. The body weight change and disease activity index (DAI) were recorded. After the last administration, spleen and colon tissue samples were collected to analyze the differences in colon length and spleen index. Hematoxylin-eosin staining was used to observe the morphology of the colon tissue. The level of diamine oxidase (DAO) in the serum was measured by the DAO assay kit. Immunohistochemistry was employed to determine the expression of tight junction proteins such as Claudin-1, Occludin, and zonula occludens-1 (ZO-1) in the colon tissue. Real-time PCR was performed to measure the mRNA levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the colon tissue. Finally, Western blot was employed to determine the protein levels of mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated kinase (ERK), phosphorylated (p)-MEK, and phosphorylated ERK in the colon tissue. ResultsCompared with the normal group, the model group exhibited decreases in body weight and colon length (P<0.01), increases in DAI, spleen index, and serum DAO level (P<0.01), damaged colonic epithelium and goblet cells, and obvious infiltration of inflammatory cells. In addition, the model group exhibited higher positive expression of Claudin-1, Occludin, and ZO-1 (P<0.01), higher mRNA levels of TNF-α and IL-1β (P<0.01), and higher protein levels of p-MEK and p-ERK (P<0.05, P<0.01) than the normal group. However, sulfasalazine and three doses of Mume Fructus markedly decreased the body weight and DAI (P<0.05), recovered the colon length and spleen index, alleviated colon tissue damage, lowered the level of DAO in the serum (P<0.01), and down-regulated the mRNA levels of TNF-α and IL-1β (P<0.01) and the protein levels of p-MEK and p-ERK (P<0.05). Sulfasalazine and low- and medium-dose Mume Fructus increased the positive expression of Occludin, Claudin-1, and ZO-1 (P<0.05, P<0.01). Furthermore, high-dose Mume Fructus elevated the protein expression of Occludin (P<0.05). ConclusionMume Fructus can restore the expression of intestinal epithelial tight junction proteins by inhibiting the phosphorylation of proteins in the MEK/ERK signaling pathway and down-regulating the levels of TNF-α and IL-1β, thus repairing the intestinal mucosal barrier in the mouse model of IBD.
9.Regulatory Effect of Modified Wumeiwan on Th17/Treg Balance and Intestinal Microbiota in Ulcerative Colitis with Dampness-heat Obstruction Syndrome in Human Flora-associated Model
Chonghao ZHANG ; Peiguang MA ; Huachen LIU ; Jialong SU ; Jie LIU ; Yalan LI ; Guichuan XU ; Na LI ; Guiying PENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):86-93
ObjectiveTo investigate the modulating effect of modified Wumeiwan (MWMW) on the ulcerative colitis (UC)-associated intestinal helper T cell 17 (Th17)/regulatory T cell (Treg) balance and intestinal flora by using a human flora-associated model of UC patients with dampness-heat obstruction syndrome, thus providing a new idea for the UC-related research and therapeutic strategies. MethodsThe 24 male C57BL/6J mice were randomized into normal control, model, and MWMW groups (n=8). Model and MWMW groups were first treated with an antibiotic cocktail (vancomycin, 0.1 g·kg-1; neomycin sulfate, 0.2 g·kg-1; ampicillin, 0.2 g·kg-1; metronidazole, 0.2 g·kg-1) for 21 days. At the end of antibiotic treatment, the gavage of fecal microbiota suspension from UC patients with dampness-heat obstruction syndrome was started at a dose of 0.2 mL·d-1 for 19 consecutive days, by which a human flora-associated model of UC was obtained. The MWMW group was administrated daily with MWMW liquid (12.5 g·kg-1), while the normal control and model groups were administrated by gavage with an equal amount of sterile water for 7 consecutive days. The symptoms of dampness-heat obstruction were observed. The colon length and spleen index were measured and calculated, and the proportions of Th17 and Treg cells were detected by flow assay. The intestinal flora was analyzed by 16S rRNA high-throughput sequencing. ResultsCompared with the normal control group, the model group showed shortened colon (P<0.05) and increased spleen index (P<0.01). Compared with the model group, the MWMW group showed prolonged colon (P<0.01) and decreased spleen index (P<0.05). After the intervention of MWMW, the Th17 proportion and Th17/Treg ratio in the colon decreased (P<0.01), and the proportion of Treg cells increased (P<0.05). The number of species and alpha and beta diversity of intestinal flora in mice were regulated by MWMW (P<0.05). In terms of intestinal flora composition, MWMW increased the relative abundance of several phyla (Firmicutes, Proteobacteria, Fusobacteriota, Actinobacteriota, and Gemmatimonadota), the genus Bacteroides, and two species (Bacteroides thetaiotaomicron and B. fragilis) in model mice. Moreover, Spearman's correlation analysis showed that the relative abundance of B. thetaiotaomicron and B. fragilis were negatively correlated with the Th17 level (P<0.05). In addition, the above changes in intestinal flora caused the changes in microbial genes involved in 14 pathways, such as glycolysis, amino acid degradation, inorganic nutrient metabolism, biosynthesis of pyrimidine deoxyribonucleotides, antibiotic resistance, and degradation of polysaccharides. ConclusionsThe human flora-associated model successfully simulated the changes (marked by a decrease in the abundance of Bacteroides) of intestinal flora in UC patients with dampness-heat obstruction syndrome. MWMW can enrich the abundance of beneficial bacteria such as B. thetaiotaomicron and B. fragilis and promote the synergistic intestinal immune modulation with the metabolic functions centered on glycolysis, amino acid metabolism, and nucleotide synthesis through bacterial polysaccharide utilization sites to reduce the Th17/Treg ratio, thereby exerting a protective effect on UC.
10.METTL3 regulates glucose transporter expression in placenta exposed to hyperglycemia through the mTOR signaling pathway
Jie NING ; Jing HUAI ; Shuxian WANG ; Jie YAN ; Rina SU ; Muqiu ZHANG ; Mengtong LIU ; Huixia YANG
Chinese Medical Journal 2024;137(13):1563-1575
Background::Alterations in the placental expression of glucose transporters (GLUTs), the crucial maternal-fetal nutrient transporters, have been found in women with hyperglycemia in pregnancy (HIP). However, there is still uncertainty about the underlying effect of the high-glucose environment on placental GLUTs expression in HIP.Methods::We quantitatively evaluated the activity of mammalian target of rapamycin (mTOR) and expression of GLUTs (GLUT1, GLUT3, and GLUT4) in the placenta of women with normal pregnancies (CTRL, n = 12) and pregnant women complicated with poorly controlled type 2 diabetes mellitus (T2DM, n = 12) by immunohistochemistry. In addition, BeWo cells were treated with different glucose concentrations to verify the regulation of hyperglycemia. Then, changes in the expression of GLUTs following the activation or suppression of the mTOR pathway were also assessed using MHY1485/rapamycin (RAPA) treatment or small interfering RNA (siRNA)-mediated silencing approaches. Moreover, we further explored the alteration and potential upstream regulatory role of methyltransferase-like 3 (METTL3) when exposed to hyperglycemia. Results::mTOR, phosphorylated mTOR (p-mTOR), and GLUT1 protein levels were upregulated in the placenta of women with T2DM compared with those CTRL. In BeWo cells, mTOR activity increased with increasing glucose concentration, and the expression of GLUT1, GLUT3, and GLUT4 as well as GLUT1 cell membrane translocation were upregulated by hyperglycemia to varying degrees. Both the drug-mediated and genetic depletion of mTOR signaling in BeWo cells suppressed GLUTs expression, whereas MHY1485-induced mTOR activation upregulated GLUTs expression. Additionally, high glucose levels upregulated METTL3 expression and nuclear translocation, and decreasing METTL3 levels suppressed GLUTs expression and mTOR activity and vice versa. Furthermore, in METTL3 knockdown BeWo cells, the inhibitory effect on GLUTs expression was eliminated by activating the mTOR signaling pathway using MHY1485. Conclusion::High-glucose environment-induced upregulation of METTL3 in trophoblasts regulates the expression of GLUTs through mTOR signaling, contributing to disordered nutrient transport in women with HIP.


Result Analysis
Print
Save
E-mail